980 resultados para fractional diffusion-wave equations
Resumo:
Structural connectivity models based on Diffusion Tensor Imaging (DTI) are strongly affected by the technique’s inability to resolve crossing fibres, either intra- or inter-hemispherical connections. Several models have been proposed to address this issue, including an algorithm aiming to resolve crossing fibres which is based on Diffusion Kurtosis Imaging (DKI). This technique is clinically feasible, even when multi-band acquisitions are not available, and compatible with multi-shell acquisition schemes. DKI is an extension of DTI enabling the estimation of diffusion tensor and diffusion kurtosis metrics. In this study we compare the performance of DKI and DTI in performing structural brain connectivity. Six healthy subjects were recruited, aged between 25 and 35 (three females). The MRI experiments were performed using a 3T Siemens Trio with a 32-channel head coil. The scans included a T1-weighted sequence (1mm3), and a DWI with b-values 0, 1000 and 2000 s:mm
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.
Resumo:
The recent massive inflow of refugees to the European Union (EU) raises a number of unanswered questions on the economic impact of this phenomenon. To examine these questions, we constructed an overlapping-generations model that describes the evolution of the skill premium and of the welfare benefit level in relevant European countries, in the aftermath of an inflow of asylum-seekers. In our simulation, relative wages of skilled workers increase between 8% and 11% in the period of the inflow; their subsequent time path is dependent on the initial skill premium. The entry of migrants creates a fiscal surplus of about 8%, which can finance higher welfare benefits in the subsequent periods. These effects are weaker in a scenario where refugees do not fully integrate into the labor market.
Resumo:
The vulnerability of the masonry envelop under blast loading is considered critical due to the risk of loss of lives. The behaviour of masonry infill walls subjected to dynamic out-of-plane loading was experimentally investigated in this work. Using confined underwater blast wave generators (WBWG), applying the extremely high rate conversion of the explosive detonation energy into the kinetic energy of a thick water confinement, allowed a surface area distribution avoiding also the generation of high velocity fragments and reducing atmospheric sound wave. In the present study, water plastic containers, having in its centre a detonator inside a cylindrical explosive charge, were used in unreinforced masonry infills panels with 1.7m by 3.5m. Besides the usage of pressure and displacement transducers, pictures with high-speed video cameras were recorded to enable processing of the deflections and identification of failure modes. Additional numerical studies were performed in both unreinforced and reinforced walls. Bed joint reinforcement and grid reinforcement were used to strengthen the infill walls, and the results are presented and compared, allowing to obtain pressure-impulse diagrams for design of masonry infill walls.
Resumo:
The present study reviews the scientific literature that describes the criteria equations for defining the mismatch between students and school furniture. This mismatch may negatively affect students' performance and comfort. Seventeen studies met the criteria of this review and twenty-one equations to test six furniture dimensions were identified. There was substantial mismatch between the relative heights of chairs and tables. Some systematic errors have been found during the application of the different equations, such as the assumption that students are sitting on chairs with a proper seat height. Only one study considered the cumulative fit. Finally, some equations are based on contradictory criteria and need to develop and evaluate new equations for these cases. Relevance to industry: Ultimately, the present work is a contribution toward improving the evaluation of school furniture and could be used to design ergonomic-oriented classroom furniture.
Resumo:
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
The aim of the present study is to explore obsessive-compulsive disorder (OCD)-related abnormalities in white matter connectivity in OCD for a core region associated with inhibitory control [i.e. inferior frontal gyrus (IFG)]. Fifteen patients with OCD (11 men) and 15 healthy controls (nine men) underwent diffusion tensor imaging scanning to study four diffusivity indexes of white matter integrity [fractional anisotropy, mean diffusivity (MD), axial diffusivity and radial diffusivity (RD)]. The results showed that persons with OCD manifested significantly lower fractional anisotropy levels in the bilateral IFG as well as its parcellations in the pars opercularis, pars triangularis, and pars orbitalis. Significantly higher levels of MD, RD were evident for the OCD group in the IFG as a whole as well as in the bilateral subregions of the pars triangularis and pars opercularis (for MD and RD), the right side of the pars orbitalis (for RD), and the left side of the pars triangularis and right side pars opercularis (for axial diffusivity). Overall, the results suggest significant alterations in structural connectivity, probably associated with myelination and axonal abnormalities in the IFG of OCD patients.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
BACKGROUND: By contrast with other southern European people, north Portuguese population registers an especially high prevalence of hypertension and stroke incidence. We designed a cohort study to identify individuals presenting accelerated and premature arterial aging in the Portuguese population. METHOD: Pulse wave velocity (PWV) was measured in randomly sampled population dwellers aged 18-96 years from northern Portugal, and used as a marker of early vascular aging (EVA). Of the 3038 individuals enrolled, 2542 completed the evaluation. RESULTS: Mean PWV value for the entire population was 8.4?m/s (men: 8.6?m/s; women: 8.2?m/s; P?0.02). The individuals were classified with EVA if their PWV was at least 97.5th percentile of z-score for mean PWV values adjusted for age (using normal European reference values as comparators). The overall prevalence of EVA was 12.5%; 26.1% of individuals below 30 years presented this feature and 40.2% of individuals in that same age strata were placed above the 90th percentile of PWV; and 18.7% of the population exhibited PWV values above 10?m/s, with male predominance (17.2% of men aged 40-49 years had PWV?>?10?m/s). Logistic regression models indicated gender differences concerning the risk of developing large artery damage, with women having the same odds of PWV above 10?m/s 10 years later than men. CONCLUSION: The population PWV values were higher than expected in a low cardiovascular risk area (Portugal). High prevalence rates of EVA and noteworthy large artery damage in young ages were found.
Resumo:
This chapter presents a general methodology for the formulation of the kinematic constraint equations at position, velocity and acceleration levels. Also a brief characterization of the different type of constraints is offered, namely the holonomic and nonholonomic constraints. The kinematic constraints described here are formulated using generalized coordinates. The chapter ends with a general approach to deal with the kinematic analysis of multibody systems.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
A rotary thermal diffusion column with the inner cylinder rotating and the outer cylinder static was used to separate n-heptane-benzene mixtures at different speeds of rotation. The results show that the column efficiency depends on the speed of rotation. For the optimum speed the increase in efficiency relative to the static column was of the order of 8%. The role of the geometric irregularities in the annulus width on performance of the rotary column is also discussed.
Resumo:
The influence of the feed composition upon the actual degrees of separation attained at the top and bottom sections of a thermogravitational column is discussed using the classical phenomenological theory of Furry, Jones, and Onsager. It is shown that, except for a feed composition of C 0 = 0.5 (mass fraction), the separation profile is nonsymmetric, i.e., the separations in the top and bottom sections of the column are nonsymmetric with respect to the feed composition, the asymmetry increasing as the feed composition moves away from C 0 = 0.5. An equation for the determination of the optimum feed location as a function of the feed composition is derived.