891 resultados para electric power generation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a multi-agent system approach to address the difficulties encountered in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission and distribution. The approach models uncertainty and combines multiple sources of uncertain information to deliver robust plan selection. We examine the approach in the context of a simplified power supply/demand scenario using a residential grid connected solar system and consider the challenges of modelling and reasoning with
uncertain sensor information in this environment. We discuss examples of plans and actions required for sensing, establish and discuss the effect of uncertainty on such systems and investigate different uncertainty theories and how they can fuse uncertain information from multiple sources for effective decision making in
such a complex system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In multi-terminal high voltage direct current (HVDC) grids, the widely deployed droop control strategies will cause a non-uniform voltage deviation on the power flow, which is determined by the network topology and droop settings. This voltage deviation results in an inconsistent power flow pattern when the dispatch references are changed, which could be detrimental to the operation and seamless integration of HVDC grids. In this paper, a novel droop setting design method is proposed to address this problem for a more precise power dispatch. The effects of voltage deviations on the power sharing accuracy and transmission loss are analysed. This paper shows that there is a trade-off between minimizing the voltage deviation, ensuring a proper power delivery and reducing the total transmission loss in the droop setting design. The efficacy of the proposed method is confirmed by simulation studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research on integrated energy system technology meets the major national strategic needs of China. Focusing on the vital theory of planning and optimal operation of integrated energy system, six fundamental problems in the study of integrated energy system are proposed systematically, including the common modeling technology for integrated energy system, the integrated simulation of integrated energy system, the planning theory and method of integrated energy system, the security theory and method of integrated energy system, the optimal operation and control of integrated energy system, the benefit assessment and operational mechanisms of integrated energy system. The status of domestic and foreign research directions related to each scientific problems are surveyed and anticipated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Power electronics plays an important role in the control and conversion of modern electric power systems. In particular, to integrate various renewable energies using DC transmissions and to provide more flexible power control in AC systems, significant efforts have been made in the modulation and control of power electronics devices. Pulse width modulation (PWM) is a well developed technology in the conversion between AC and DC power sources, especially for the purpose of harmonics reduction and energy optimization. As a fundamental decoupled control method, vector control with PI controllers has been widely used in power systems. However, significant power loss occurs during the operation of these devices, and the loss is often dissipated in the form of heat, leading to significant maintenance effort. Though much work has been done to improve the power electronics design, little has focused so far on the investigation of the controller design to reduce the controller energy consumption (leading to power loss in power electronics) while maintaining acceptable system performance. This paper aims to bridge the gap and investigates their correlations. It is shown a more thoughtful controller design can achieve better balance between energy consumption in power electronics control and system performance, which potentially leads to significant energy saving for integration of renewable power sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Santee Cooper annually published Fingertip Facts, which provides a snapshot of utility, including listings of leadership, comparative highlights, year in review, and description of their environmental stewardship.