945 resultados para digital signal processing
Resumo:
The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.
Resumo:
Na era de sistemas embarcados complexos, a interface direta de dispositivos e sistemas integrados para o mundo real demanda o uso de sensores e seus circuitos analógicos de suporte. Desde que a maioria das características físicas de um sensor requer algum tipo de calibração, este trabalho compara e discute quatro técnicas digitais de calibração adaptadas para aplicação em sistemas embarcados. Para fins de comparação, estes métodos de calibração foram implementados em Matlab5.3, e em um DSP (Digital Signal Processor) . Através das medidas realizadas durante a operação em regime do DSP, pode-se determinar parâmetros importantes de projeto, como potência dissipada e tempo de processamento. Outros critérios de comparação, como área consumida, tempo de processamento, facilidade de automação e taxa de crescimento do custo área e do custo velocidade com o aumento de resolução também foram analisados. Os resultados das implementações são apresentados e discutidos com o objetivo de descobrir qual o melhor método de calibração para aplicações em sistemas embarcados.
Resumo:
Os processamentos de imagens orbitais efetuados através de técnicas de sensoriamento remoto geraram informações qualitativas de natureza textural (morfo-estruturas). Estas permitiram (1) o reconhecimento de áreas com diferentes padrões estruturais tendo diferentes potencialidades para a prospecção de fluorita, (2) a identificação de novos lineamentos estruturais potencialmente favoráveis à mineralização e (3) evidenciaram prolongamentos extensos para as principais estruturas mineralizadas, (4) às quais se associam um grande número de estruturas, antes desconhecidas, com grande potencial prospectivo. O aprimoramento de técnicas de classificação digital sobre produtos de razões de bandas e análise por componentes principais permitiu identificar a alteração hidrotermal associada às estruturas, incorporando novos critérios para a prospecção de fluorita. Buscando-se quantificar os dados de alteração hidrotermal, foi efetuada a análise espectrorradiométrica das rochas do distrito fluorítico. Integrando estas informações com dados TM LANDSAT 5, em nível de reflectância, obteve-se a classificação espectral das imagens orbitais, o que permitiu a identificação de estruturas menores com um detalhe nunca antes obtido. Os processamentos de dados aerogeofísicos forneceram resultados sobre estruturas (magnetometria) e corpos graníticos afetados por alteração hidrotermal (aerogamaespectrometria). Estes produtos foram integrados com dados TM LANDSAT 5 associando o atributo textural da imagem orbital ao comportamento radiométrico das rochas. Diagnosticou-se o lineamento Grão-Pará como o principal prospecto do distrito. E levantaram-se uma série de dados sobre a compartimentação tectônica da região, a zonação de fácies das rochas graníticas (rocha fonte do flúor) e as alterações hidrotermais associadas ao magmatismo granítico. Isto permitiu a compreensão da distribuição regional dos depósitos de fluorita, adicionando-se um novo critério à prospecção de fluorita, a relação espacial entre a mineralização e a rocha fonte de F. Esta última corresponde à fácies granítica da borda do Maciço Pedras Grandes.
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
This work presents the results of a survey in oil-producing region of the Macau City, northern coast of Rio Grande do Norte. All work was performed under the Project for Monitoring Environmental Change and the Influence of Hydrodynamic forcing on Morphology Beach Grass Fields, Serra Potiguar in Macau, with the support of the Laboratory of Geoprocessing, linked to PRH22 - Training Program in Geology Geophysics and Information Technology Oil and Gas - Department of Geology/CCET/UFRN and the Post-Graduation in Science and Engineering Oil/PPGCEP/UFRN. Within the economic-ecological context, this paper assesses the importance of mangrove ecosystem in the region of Macau and its surroundings as well as in the following investigative exploration of potential areas for projects involving reforestation and / or Environmental Restoration. At first it was confirmed the ecological potential of mangrove forests, with primary functions: (i) protection and stabilization of the shoreline, (ii) nursery of marine life, and (iii) source of organic matter to aquatic ecosystems, (iv) refuge of species, among others. In the second phase, using Landsat imagery and techniques of Digital Image Processing (DIP), I came across about 18,000 acres of land that can be worked on environmental projects, being inserted in the rules signed the Kyoto Protocol to the market carbon. The results also revealed a total area of 14,723.75 hectares of activity of shrimp production and salting that can be harnessed for the social, economic and environmental potential of the region, considering that over 60% of this area, ie, 8,800 acres, may be used in the planting of the genus Avicennia considered by the literature that the species best sequesters atmospheric carbon, reaching a mean value of 59.79 tons / ha of mangrove
Resumo:
In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
This work proposes the development of a Computer System for Analysis of Mammograms SCAM, that aids the doctor specialist in the identification and analysis of existent lesions in digital mammograms. The computer system for digital mammograms processing will make use of a group of techniques of Digital Image Processing (DIP), with the purpose of aiding the medical professional to extract the information contained in the mammogram. This system possesses an interface of easy use for the user, allowing, starting from the supplied mammogram, a group of processing operations, such as, the enrich of the images through filtering techniques, the segmentation of areas of the mammogram, the calculation the area of the lesions, thresholding the lesion, and other important tools for the medical professional's diagnosis. The Wavelet Transform will used and integrated into the computer system, with the objective of allowing a multiresolution analysis, thus supplying a method for identifying and analyzing microcalcifications
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
This paper proposes a method based on the theory of electromagnetic waves reflected to evaluate the behavior of these waves and the level of attenuation caused in bone tissue. For this, it was proposed the construction of two antennas in microstrip structure with resonance frequency at 2.44 GHz The problem becomes relevant because of the diseases osteometabolic reach a large portion of the population, men and women. With this method, the signal is classified into two groups: tissue mass with bony tissues with normal or low bone mass. For this, techniques of feature extraction (Wavelet Transform) and pattern recognition (KNN and ANN) were used. The tests were performed on bovine bone and tissue with chemicals, the methodology and results are described in the work
Resumo:
Following the new tendency of interdisciplinarity of modern science, a new field called neuroengineering has come to light in the last decades. After 2000, scientific journals and conferences all around the world have been created on this theme. The present work comprises three different subareas related to neuroengineering and electrical engineering: neural stimulation; theoretical and computational neuroscience; and neuronal signal processing; as well as biomedical engineering. The research can be divided in three parts: (i) A new method of neuronal photostimulation was developed based on the use of caged compounds. Using the inhibitory neurotransmitter GABA caged by a ruthenium complex it was possible to block neuronal population activity using a laser pulse. The obtained results were evaluated by Wavelet analysis and tested by non-parametric statistics. (ii) A mathematical method was created to identify neuronal assemblies. Neuronal assemblies were proposed as the basis of learning by Donald Hebb remain the most accepted theory for neuronal representation of external stimuli. Using the Marcenko-Pastur law of eigenvalue distribution it was possible to detect neuronal assemblies and to compute their activity with high temporal resolution. The application of the method in real electrophysiological data revealed that neurons from the neocortex and hippocampus can be part of the same assembly, and that neurons can participate in multiple assemblies. (iii) A new method of automatic classification of heart beats was developed, which does not rely on a data base for training and is not specialized in specific pathologies. The method is based on Wavelet decomposition and normality measures of random variables. Throughout, the results presented in the three fields of knowledge represent qualification in neural and biomedical engineering
Resumo:
Relevant researches have been growing on electric machine without mancal or bearing and that is generally named bearingless motor or specifically, mancal motor. In this paper it is made an introductory presentation about bearingless motor and its peripherical devices with focus on the design and implementation of sensors and interfaces needed to control rotor radial positioning and rotation of the machine. The signals from the machine are conditioned in analogic inputs of DSP TMS320F2812 and used in the control program. This work has a purpose to elaborate and build a system with sensors and interfaces suitable to the input and output of DSP TMS320F2812 to control a mancal motor, bearing in mind the modularity, simplicity of circuits, low number of power used, good noise imunity and good response frequency over 10 kHz. The system is tested at a modified ordinary induction motor of 3,7 kVA to be used with a bearingless motor with divided coil
Resumo:
The vision is one of the five senses of the human body and, in children is responsible for up to 80% of the perception of world around. Studies show that 50% of children with multiple disabilities have some visual impairment, and 4% of all children are diagnosed with strabismus. The strabismus is an eye disability associated with handling capacity of the eye, defined as any deviation from perfect ocular alignment. Besides of aesthetic aspect, the child may report blurred or double vision . Ophthalmological cases not diagnosed correctly are reasons for many school abandonments. The Ministry of Education of Brazil points to the visually impaired as a challenge to the educators of children, particularly in literacy process. The traditional eye examination for diagnosis of strabismus can be accomplished by inducing the eye movements through the doctor s instructions to the patient. This procedure can be played through the computer aided analysis of images captured on video. This paper presents a proposal for distributed system to assist health professionals in remote diagnosis of visual impairment associated with motor abilities of the eye, such as strabismus. It is hoped through this proposal to contribute improving the rates of school learning for children, allowing better diagnosis and, consequently, the student accompaniment
Resumo:
Electrical Motors transform electrical energy into mechanic energy in a relatively easy way. In some specific applications, there is a need for electrical motors to function with noncontaminated fluids, in high speed systems, under inhospitable conditions, or yet, in local of difficult access and considerable depth. In these cases, the motors with mechanical bearings are not adequate as their wear give rise to maintenance. A possible solution for these problems stems from two different alternatives: motors with magnetic bearings, that increase the length of the machine (not convenient), and the bearingless motors that aggregate compactness. Induction motors have been used more and more in research, as they confer more robustness to bearingless motors compared to other types of machines building with others motors. The research that has already been carried out with bearingless induction motors utilized prototypes that had their structures of stator/rotor modified, that differ most of the times from the conventional induction motors. The goal of this work is to study the viability of the use of conventional induction Motors for the beringless motors applications, pointing out the types of Motors of this category that can be more useful. The study uses the Finite Elements Method (FEM). As a means of validation, a conventional induction motor with squirrel-cage rotor was successfully used for the beringless motor application of the divided winding type, confirming the proposed thesis. The controlling system was implemented in a Digital Signal Processor (DSP)