912 resultados para current density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we first present the 'wet N2O' furnace oxidation process to grow nitrided tunnel oxides in the thickness range 6 to 8 nm on silicon at a temperature of 800 degrees C. Electrical characteristics of MOS capacitors and MOSFETs fabricated using this oxide as gate oxide have been evaluated and the superior features of this oxide are ascertained The frequency response of the interface states, before and after subjecting the MOSFET gate oxide to constant current stress, is studied using a simple analytical model developed in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt has been made to review current information on the microscopic thermodynamics of liquid alloys. For complex alloys, and for alloys of simple metals with strong "compound-forming" tendencies, the fluctuation approach developed by Bhatia and his co-workers provides a useful link between the fluctuation in concentration and number density of atoms in the mixture on the one hand, and macroscopic thermodynamic properties on the other. Some selected examples of the application of structural data of liquid alloys to estimating macroscopic thermodynamic properties such as the Gibbs free energy of mixing, coupled with the fluctuation approach are given. The relevant thermodynamic quantities such as vapor pressure and entropy are also discussed, to facilitate the understanding of the present status of the fundamental and powerful links between macroscopic and microscopic (atomic scale) structure of liquid alloys (Mg--Sn, Li--Pb, Hg--K). 63 ref.--AA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable and highly reproducible current‐limiting characteristics are observed for polycrystalline ceramics prepared by sintering mixtures of coarse‐grained, donor‐doped BaTiO3 (tetragonal) as the major phase and ultrafine, undoped cubic perovskite such as BaSnO3, BaZrO 3, SrTiO3, or BaTiO3 (cubic). The linear current‐voltage (I‐V) relation changes over to current limiting as the field strength increases, when thermal equilibrium is attained. The grain‐boundary layers with low donor and high Sn, Zr, or Sr have depleted charge carrier density as compared to that in the grain bulk. The voltage drop at the grain‐boundary layers diminishes the temperature gradient between the interior and surface regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HgCdTe mid wave infrared (MWIR) n(+)/nu/p(+) homo-junction photodiodes with planar architecture are designed, fabricated, and measured at room temperature. An improved analytical I-V model is reported by incorporating trap assisted tunneling and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (E-t), trap density (N-t), and the doping concentrations of n(+) and nu regions as fitting parameters. Values of E-t and N-t are determined as 0.79 E-g and similar to 9 x 10(14) cm(-3), respectively, in all cases. Doping concentration of nu region was found to exhibit nonequilibrium depletion from a value of 2 x 10(16) to 4 x 10(15) cm(-3) for n(+) doping of 2 x 10(17) cm(-3). Pronounced negative differential resistance is observed in the homo-junction HgCdTe diodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682483]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dark currents n(+)/v/p(+) Hg0.69Cd0.Te-31 mid wave infrared photodiodes were measured at room temperature. The diodes exhibited negative differential resistance at room-temperature, but with increasing leakage currents as a function of reverse bias. The current-voltage characteristics were simulated and fitted by incorporating trap assisted tunneling via traps and Shockley-Read-Hall generation recombination process due to dislocations in the carrier transport equations. The thermal suppression of carriers was simulated by taking energy level of trap (E-t), trap density (N-t) and the doping concentrations of n(+) and v regions as fitting parameters. Values of E-t and N-t were 0.78E(g) and similar to 6-9 x 10(14) cm(-3) respectively for most of the diodes. Variable temperature current voltage measurements on variable area diode array (VADA) structures confirmed the fact that variation in zero bias resistance area product (R(0)A) is related to g-r processes originating from variation in concentration and kind of defects that intersect a junction area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable estimates of species density are fundamental to planning conservation strategies for any species; further, it is equally crucial to identify the most appropriate technique to estimate animal density. Nocturnal, small-sized animal species are notoriously difficult to census accurately and this issue critically affects their conservation status, We carried out a field study in southern India to estimate the density of slender loris, a small-sized nocturnal primate using line and strip transects. Actual counts of study individuals yielded a density estimate of 1.61 ha(-1); density estimate from line transects was 1.08 ha(-1); and density estimates varied from 1.06 ha(-1) to 0.59 ha(-1) in different fixed-width strip transects. We conclude that line and strip transects may typically underestimate densities of cryptic, nocturnal primates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the growth of crack-free blue and greenemitting LED structures grown on 2-inch and 6-inch Si(111) substrates by metalorganic vapour phase epitaxy (MOVPE), using AlN nucleation layers and AlGaN buffer layers for stress management. LED device performance and its dependence on threading dislocation (TD) density and emission wavelength were studied. Despite the inherently low light extraction efficiency, an output power of 1.2 mW at 50 mA was measured from a 500 μm square planar device, emitting at 455 nm. The light output decreases dramatically as the emission wavelength increases from 455 nm to 510 nm. For LED devices emitting at similar wavelength, the light output was more than doubled when the TD density was reduced from 5×1 09 cm-2 to 2×109 cm-2. Our results clearly show that high TD density is detrimental to the overall light output, highlighting the need for further TD reduction for structures grown on Si. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a 2-D hybrid model, the authors have found that external currents play an important role in the plasma parameters in the reactor. The plasma density, temperature and electrostatic potential would be significantly influenced by the applied external currents.