999 resultados para compostos funcionais


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of emerging interest microcontaminants in environmental samples of surface water, groundwater, drinking water, wastewater and effluents from water and sewage treatment plants (WTP and STP), in many countries, suggests these pollutants are widespread in the environment, mainly in urban areas. This is a reason for great concern, since many of these compounds are potentially harmful for humans other living beings, and they are not efficiently removed in the majority of WTP and STP, which is exacerbated by precariousness of water supply and sanitation services. In Natal, like other Brazilian cities, the sewage system serves only part of the urban area (about 30%), so that the rest of the wastewater is infiltrated in the sandy soil of the region in cesspool-dry well systems. This has resulted in contamination of groundwater in the area (sand-dune barrier aquifer, which supplies more than 50% of the city population), which has been observed by the increase in nitrate concentration in supply wells. The vulnerability of the sanddune barrier aquifer, combined with reports of the presence of emerging interest microcontaminants in Brazil and worldwide, led to this research, which investigated the occurrence of fifteen microcontaminants in Natal groundwater and sewage. Samples were collected at five wells used for water supply, the raw sewage and the effluents from biological reactors from STP (UASB and activated sludge reactors). Two samples of each sample were taken, with one week apart between the samples. To determine the contaminants, extraction of aquifer water, and raw and treated sewage samples were performed, through the technique of using SPE Strata X cartridge (Phenomenex®) to the aquifer water, and Strata SAX and Strata X (Phenomenex® ) for samples of raw and treated sewage. Subsequently the extracts were analyzed using GC-MS technique. Much of the analyzed microcontaminants were detected in groundwater and sewage. The concentrations in groundwater are generally lower than those found in the sewers. Some of the compounds (estrone, estradiol, bisphenol A, caffeine, diclofenac, naproxen, paracetamol and ibuprofen) are partially removed at STP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hancornia speciosa Gomes (Apocynaceae), popularly known as ‘mangabeira’, has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and stomach disorders. Regarding the Hancornia speciosa fruits, the ethnobotany indicates its use especially for treating inflammation and tuberculosis. However, no study has been done so far to prove such biological activities. The objective was evaluation anti-inflammatory activity from the fruits of Hancornia speciosa Gomes (mangabeira). Aqueous extract was prepared by decoction, subsequently submitted the liquid-liquid fractionation. The secondary metabolites were identified by high performance liquid chromatography coupled with detector diode array (HPLC-DAD) and liquid chromatography diode array detector coupled with mass spectrometry (LC-DAD-MS). The anti-inflammatory properties of the aqueous extract, dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and n-butanol (n-BuOH) fractions of the fruits from H. speciosa, as well as rutin and chlorogenic acid were investigated using in vitro and in vivo models. In vivo tests comprised the xylene-induced ear edema that was measured the formation of edema, carrageenan-induced peritonitis was evaluated the total leukocytes at 4h and zymosan-induced air pouch was measured the total leukocytes and differential cell count at 6, 24 and 48 hours, whereas in vitro tests were evaluated levels of cytokines IL-1β, IL-6, IL-12 and TNF-α using ELISA obtained of carrageenan-induced peritonitis model. The results showed the presence of rutin and chlorogenic acid were detected in the aqueous extract from H. speciosa fruits by HPLC-DAD and LC-DAD-ME. Furthermore, the aqueous extracts and fractions, as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and reduced cell migration in the animal models such as carrageenan-induced peritonitis and zymosan-induced air pouch. In addition, reduced levels of cytokines IL-1β, IL-6, IL-12 and TNF-α were observed. This is the first study that demonstrated the anti-inflammatory effect of aqueous extract from Hancornia speciosa fruits against different inflammatory agents in animal models, suggesting that their bioactive molecules, especially rutin and chlorogenic acid contributing, at least in part, to the anti-inflammatory effect of aqueous extract. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that this aqueous extract has therapeutic potential for the development of a herbal drugs with anti-inflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artifi cial eutrophication is one of the biggest t h reat for the quality of aquatic ecosystems in the whole world. The expectations for the future climatic scenarios in arid and semi - arid regions are intense and frequent droughts enhancing the risk of eutrophicati on and cyanobacterial blooms. Restoration techniques of eutrophic lakes were proposed to reduce nutrient loading and improve the water quality. A successful technique used in temperate regions is the biomanipulation by benthivorous fish removal . Our hypoth esis is that the benthivorous fish removal reduces phytoplankton total biomass and change the composition of phytoplankton functional groups, improving water quality. The aim of the study was evaluate the impact of biomanipulation on phytoplankton function al groups and in the water quality. We applied the technique of biomanipulation in the artificial lake ESEC, in a semi - arid region of Brazil and analyzed the physical and chemical variables and the dynamic of phytoplankton functional groups monthly during November 2012 to August 2013. With the removal of benthivorous fish we observed a significant increase of the euphotic depth, phytoplankton richness and the recruitment of green algae (groups F and J ), indicators of good water quality. However, we did not observe significant differences on total phosphorous concentration and on phytoplankton biomass and diversity. The drought effect in the region during the study was evident , promoting a drastic reduction on water level which influenced the availability of resource and affected phytoplankton community before the biomanipulation. To evaluate the effect of severe drought on the dynamic of phytoplankton functional groups and test if the drought periods are favorable to dominance of cyanobacterial groups, we stu died two artificial neighbors lakes (ESEC and Pocinhos) in a semi - arid tropical region during May 2012 to February 2013. We observed a temporal differentiation of biotic and abiotic variables caused by drought. Both lakes presented reduction of 2 meters of water level and increase on conductivity, turbidity, nutrients concentration and a reduction on water transparency, during the severe drought. The deeper lake (Pocinhos) increased phytoplankton total biomass and presented cyanobacterial functional group d ominance (group S N ) and the shallower lake (ESEC) reduced phytoplankton total biomass and presented dominance of mixotrophic and flagellate functional groups (groups W 1 e W 2 ). Summarizing, the knowledge of the effects of benthivorous fish removal in semi - a rid tropical lakes still unknown and this study had limitations caused by the impact of drought. Thus, it is necessary a long term monitoring to investigate the real effects of biomanipulation on the functioning of the studied ecosystems. Otherwise, period s of drought could have opposite effects (increase or reduction) on total biomass and composition of phytoplankton functional groups. Drought not always leads to dominance of cyanobacterial groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the zinc status and reference intervals for serum zinc concentration considering dietary, functional, and biochemical indicators in healthy children in the Brazilian Northeast. Methods: The study included 131 healthy children, 72 girls and 59 boys, between 6-9 years old. Anthropometric assessment was made by BMI/age; dietary assessment by prospective 3-day food register, and evaluation of total proteins was performed. Zinc in serum samples were analyzed in triplicate in the same assay flame using atomic absorption spectrophotometry. Results: All subjects were eutrophic according to BMI/age classification. With respect to dietary assessment, only the intake of fiber and calcium were below the recommendations by age and gender. Biochemical parameters were all within the normal reference range. Reference intervals for basal serum zinc concentration 0.70-1.14 μg/mL in boys, 0.73-1.17 μg/mL in girls, and 0.72-1.15 μg/mL in total population. Conclusions: This study presents pediatric reference intervals for serum zinc concentration, which are useful to establish the zinc status in the population or in specific groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of electrical resistivity, magnetic susceptibility, specific heat and x-ray absorption spectroscopy measurements in Tb1−xYxRhIn5 (x = 0.00, 0.15, 0.4.0, 0.50 e 0.70) single crystals. Tb1−xYxRhIn5 is an antiferromagnetic AFM compound with ordering temperature TN ≈ 46 K, the higher TN within the RRhIn5 serie (R : rare earth). We evaluate the physical properties evolution and the supression of the AFM state considering doping and Crystalline Electric Field (CEF) effects on magnetic exchange interaction between Tb3+ magnetic ions. CEF acts like a perturbation potential, breaking the (2J + 1) multiplet s degeneracy. Also, we studied linear-polarization-dependent soft x-ray absorption at Tb M4 and M5 edges to validate X-ray Absorption Spectroscopy as a complementary technique in determining the rare earth CEF ground state. Samples were grown by the indium excess flux and the experimental data (magnetic susceptibility and specific heat) were adjusted with a mean field model that takes account magnetic exchange interaction between first neighbors and CEF effects. XAS experiments were carried on Total Electron Yield mode at Laborat´onio Nacional de Luz S´ıncrotron, Campinas. We measured X-ray absorption at Tb M4,5 edges with incident polarized X-ray beam parallel and perpendicular to c-axis (E || c e E ⊥ c). The mean field model simulates the mean behavior of the whole system and, due to many independent parameters, gives a non unique CEF scheme. XAS is site- and elemental- specific technique and gained the scientific community s attention as complementary technique in determining CEF ground state in rare earth based compounds. In this work we wil discuss the non conclusive results of XAS technique in TbRhIn5 compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho é identificar os elementos dos Compostos de Marketing utilizados pelas Empresas de Serviços Contábeis (ESCs), visando contribuir com a compreensão do uso das ferramentas do Marketing de Serviços pelas ESCs, a partir da definição dos seus Compostos de Marketing. O presente estudo é de natureza exploratória e se propôs a estudar o envolvimento das empresas com a prática do marketing. Os dados foram coletados por meio de entrevistas semiestruturadas com os gestores das ESCs. Ao final, pode-se constatar que as ESCs pesquisadas adotam a prática de algumas técnicas de marketing identificadas nos Compostos de Marketing aplicados nos serviços contábeis, tais como: Produto, Preço, Promoção e Praça, Pessoas, Ambiente e Processos. A prática de marketing é influenciada pelo porte das empresas-clientes dessas ESCs. Constatou-se que as ESCs, focadas no atendimento a clientes de grande porte, já adotam algumas práticas de marketing, mesmo que de forma embrionária, o que não acontece com as ESCs que prestam serviços para micros e pequenas empresas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho teve como principal objetivo caracterizar os metabolitos secundários, compostos lipofílicos e compostos mais polares, de três macroalgas existentes na costa portuguesa, nomeadamente da H. elongata, L. ochroleuca e U. pinnatifida, de forma a contribuir para a sua valorização. Foram realizadas extrações Soxhlet com diclorometano para extrair os compostos lipofílicos, enquanto as frações mais polares foram obtidas por extrações convencionais sólido-líquido, usando diferentes misturas de solventes (acetona:H2O e metanol:H2O:AcOH). Os extratos foram analisados por GC-MS e HPLC-MS. Os extratos polares foram ainda avaliados quanto à sua atividade antioxidante e quanto ao teor de fenóis totais (método de Folin-Ciocâlteau) e florotaninos (método DMBA). A fração lipofílica das três macroalgas estudadas é composta principalmente por ácidos gordos, álcoois alifáticos de cadeia longa e esteróis. O ácido hexadecanóico mostrou ser o composto maioritário das três espécies de algas, seguido dos ácidos octadeca-9-enóico e tetradecanóico. O fucosterol foi o esterol mais abundante encontrado para a H. elongata, enquanto que na L. ochroleuca e na U. pinnatifida foi o 24-metilenocolesterol. Os extratos polares obtidos a partir das duas metodologias de extração apresentaram rendimentos de extração elevados, tendo os extratos acetona:H2O apresentado rendimentos de extração superiores (88.73-92.33 %). Estes extratos mostraram ainda teores de fenóis e florotaninos totais mais elevados, com valores entre 524.03-635.69 g EAG/kg de peso seco e 1.48-1.55 g EFG/kg de peso seco, respetivamente. Os extratos de acetona:H2O no ensaio DPPH apresentaram valores de IC50 entre 6.57-7.64 μg/mL. Estes valores, apesar de serem inferiores ao IC50 do ácido ascórbico, são superiores ao determinado para o antioxidante sintético butil-hidroxitolueno (BHT). O extrato da acetona:H2O da L. ochroleuca foi o que apresentou melhor atividade antioxidante, com um IC50 de 6.57 ± 0.71 μg/mL. A análise por HPLC-DAD-MSn não permitiu até ao momento detetar compostos fenólicos nos extratos obtidos. Estes resultados são uma contribuição relevante para a valorização destas espécies de macroalgas como fonte de fitoquímicos valiosos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação é composta por 5 artigos.