916 resultados para cellular disruption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the relationship between CO2-induced seawater acidification, photo-physiological performance and intracellular pH (pHi) in a model cnidarian-dinoflagellate symbiosis - the sea anemone Aiptasia sp. -under ambient (289.94 ± 12.54 µatm), intermediate (687.40 ± 25.10 µatm) and high (1459.92 ± 65.51 µatm) CO2 conditions. These treatments represented current CO2 levels, in addition to CO2 stabilisation scenarios IV and VI provided by the Intergovernmental Panel on Climate Change (IPCC). Anemones were exposed to each treatment for two months and sampled at regular intervals. At each time-point we measured a series of physiological responses: maximum dark-adapted fluorescent yield of PSII (Fv/Fm), gross photosynthetic rate, respiration rate, symbiont population density, and light-adapted pHi of both the dinoflagellate symbiont and isolated host anemone cell. We observed increases in all but one photo-physiological parameter (Pgross:R ratio). At the cellular level, increases in light-adapted symbiont pHi were observed under both intermediate and high CO2 treatments, relative to control conditions (pHi 7.35 and 7.46 versus pHi 7.25, respectively). The response of light-adapted host pHi was more complex, however, with no change observed under the intermediate CO2 treatment, but a 0.3 pH-unit increase under the high CO2 treatment (pHi 7.19 and 7.48, respectively). This difference is likely a result of a disproportionate increase in photosynthesis relative to respiration at the higher CO2 concentration. Our results suggest that, rather than causing cellular acidosis, the addition of CO2 will enhance photosynthetic performance, enabling both the symbiont and host cell to withstand predicted ocean acidification scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 µmol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudio de la dinámica de una población donde los individuos son contribuyentes (pagadores de impuestos) o no mediante un autómata celular 2D

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A disruption predictor based on support vector machines (SVM) has been developed to be used in JET. The training process uses thousands of discharges and, therefore, high performance computing has been necessary to obtain the models. To this respect, several models have been generated with data from different JET campaigns. In addition, various kernels (mainly linear and RBF) and parameters have been tested. The main objective of this work has been the implementation of the predictor model under real-time constraints. A “C-code” software application has been developed to simulate the real-time behavior of the predictor. The application reads the signals from the JET database and simulates the real-time data processing, in particular, the specific data hold method to be developed when reading data from the JET ATM real time network. The simulator is fully configurable by means of text files to select models, signal thresholds, sampling rates, etc. Results with data between campaigns C23and C28 will be shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of disruptions in JET became even more important with the replacement of the previous Carbon Fiber Composite (CFC) wall with a more fragile full metal ITER-like wall (ILW). The development of robust disruption mitigation systems is crucial for JET (and also for ITER). Moreover, a reliable real-time (RT) disruption predictor is a pre-requisite to any mitigation method. The Advance Predictor Of DISruptions (APODIS) has been installed in the JET Real-Time Data Network (RTDN) for the RT recognition of disruptions. The predictor operates with the new ILW but it has been trained only with discharges belonging to campaigns with the CFC wall. 7 realtime signals are used to characterize the plasma status (disruptive or non-disruptive) at regular intervals of 1 ms. After the first 3 JET ILW campaigns (991 discharges), the success rate of the predictor is 98.36% (alarms are triggered in average 426 ms before the disruptions). The false alarm and missed alarm rates are 0.92% and 1.64%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruptions in tokamaks devices are unavoidable, and they can have a significant impact on machine integrity. So it is very important have mechanisms to predict this phenomenon. Disruption prediction is a very complex task, not only because it is a multi-dimensional problem, but also because in order to be effective, it has to detect well in advance the actual disruptive event, in order to be able to use successful mitigation strategies. With these constraints in mind a real-time disruption predictor has been developed to be used in JET tokamak. The predictor has been designed to run in the Multithreaded Application Real-Time executor (MARTe) framework. The predictor ?Advanced Predictor Of DISruptions? (APODIS) is based on Support Vector Machine (SVM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.