938 resultados para bearing pads


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire safety of buildings has been recognised as very important by the building industry and the community at large. Gypsum plasterboards are widely used to protect light gauge steel frame (LSF) walls all over the world. Gypsum contains free and chemically bound water in its crystal structure. Plasterboard also contains gypsum (CaSO4.2H2O) and calcium carbonate (CaCO3). The dehydration of gypsum and the decomposition of calcium carbonate absorb heat, and thus are able to protect LSF walls from fires. Kolarkar and Mahendran (2008) developed an innovative composite wall panel system, where the insulation was sandwiched between two plasterboards to improve the thermal and structural performance of LSF wall panels under fire conditions. In order to understand the performance of gypsum plasterboards and LSF wall panels under standard fire conditions, many experiments were conducted in the Fire Research Laboratory of Queensland University of Technology (Kolarkar, 2010). Fire tests were conducted on single, double and triple layers of Type X gypsum plasterboards and load bearing LSF wall panels under standard fire conditions. However, suitable numerical models have not been developed to investigate the thermal performance of LSF walls using the innovative composite panels under standard fire conditions. Continued reliance on expensive and time consuming fire tests is not acceptable. Therefore this research developed suitable numerical models to investigate the thermal performance of both plasterboard assemblies and load bearing LSF wall panels. SAFIR, a finite element program, was used to investigate the thermal performance of gypsum plasterboard assemblies and LSF wall panels under standard fire conditions. Appropriate values of important thermal properties were proposed for plasterboards and insulations based on laboratory tests, literature review and comparisons of finite element analysis results of small scale plasterboard assemblies from this research and corresponding experimental results from Kolarkar (2010). The important thermal properties (thermal conductivity, specific heat capacity and density) of gypsum plasterboard and insulation materials were proposed as functions of temperature and used in the numerical models of load bearing LSF wall panels. Using these thermal properties, the developed finite element models were able to accurately predict the time temperature profiles of plasterboard assemblies while they predicted them reasonably well for load bearing LSF wall systems despite the many complexities that are present in these LSF wall systems under fires. This thesis presents the details of the finite element models of plasterboard assemblies and load bearing LSF wall panels including those with the composite panels developed by Kolarkar and Mahendran (2008). It examines and compares the thermal performance of composite panels developed based on different insulating materials of varying densities and thicknesses based on 11 small scale tests, and makes suitable recommendations for improved fire performance of stud wall panels protected by these composite panels. It also presents the thermal performance data of LSF wall systems and demonstrates the superior performance of LSF wall systems using the composite panels. Using the developed finite element of models of LSF walls, this thesis has proposed new LSF wall systems with increased fire rating. The developed finite element models are particularly useful in comparing the thermal performance of different wall panel systems without time consuming and expensive fire tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of cryotherapy, in the form of cold water immersion, on knee joint position sense. Fourteen healthy volunteers, with no previous knee injury or pre-existing clinical condition, participated in this randomized cross-over trial. The intervention consisted of a 30-min immersion, to the level of the umbilicus, in either cold (14 ± 1°C) or tepid water(28 ± 1°C). Approximately one week later, in a randomized fashion, the volunteers completed the remaining immersion. Active ipsilateral limb repositioning sense of the right knee was measured, using weight-bearing and non-weight bearing assessments, employing video-recorded 3D motion analysis. These assessments were conducted immediately before and after a cold and tepid water immersion. No significant differences were found between treatments for the absolute (P = 0.29), relative (P = 0.21) or variable error (P = 0.86). The average effect size of the outcome measures was modest (range –0.49 to 0.9) and all the associated 95% confidence intervals for these effect sizes crossed zero. These results indicate that there is no evidence of an enhanced risk of injury, following a return to sporting activity, after cold water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a feasible spatial collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY DESIGN: Controlled laboratory study. OBJECTIVES: To investigate the reliability and concurrent validity of photographic measurements of hallux valgus angle compared to radiographs as the criterion standard. BACKGROUND: Clinical assessment of hallux valgus involves measuring alignment between the first toe and metatarsal on weight-bearing radiographs or visually grading the severity of deformity with categorical scales. Digital photographs offer a noninvasive method of measuring deformity on an exact scale; however, the validity of this technique has not previously been established. METHODS: Thirty-eight subjects (30 female, 8 male) were examined (76 feet, 54 with hallux valgus). Computer software was used to measure hallux valgus angle from digital records of bilateral weight-bearing dorsoplantar foot radiographs and photographs. One examiner measured 76 feet on 2 occasions 2 weeks apart, and a second examiner measured 40 feet on a single occasion. Reliability was investigated by intraclass correlation coefficients and validity by 95% limits of agreement. The Pearson correlation coefficient was also calculated. RESULTS: Intrarater and interrater reliability were very high (intraclass correlation coefficients greater than 0.96) and 95% limits of agreement between photographic and radiographic measurements were acceptable. Measurements from photographs and radiographs were also highly correlated (Pearson r = 0.96). CONCLUSIONS: Digital photographic measurements of hallux valgus angle are reliable and have acceptable validity compared to weight-bearing radiographs. This method provides a convenient and precise tool in assessment of hallux valgus, while avoiding the cost and radiation exposure associated with radiographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice. Methods The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots. Findings Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice. Conclusions ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of the LCBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LCBs with stiffened web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test results showed that the plate stiffeners established using AISI recommendations are inadequate to restore the shear strengths of LCBs with web openings. Hence new stiffener arrangements have been proposed for LCBs based on experimental results. This paper presents the details of this experimental study on the shear strength of lipped channel beams with stiffened web openings, and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commercialization of Chinese media has taken place over the past two decades; it has become a significant force since 2001 when China joined the World Trade Organisation. With demand for original content increasing and China contemplating a cultural trade deficit in media content, there is much discussion of agglomeration and clustering. Beijing, as the national media centre of China, witnesses a process of media agglomeration while bearing the problem of cultural export during the media commercialization. Michael Curtin‟s idea of media capital, which absorbs media resources and personnel and exports media products transnationally, provides a dynamic perspective of understanding media agglomeration and dispersion under different political social and cultural circumstances. Hence the question whether Beijing is going to transform into a transnational media capital is worth studying, in order to observe and comprehend China‟s media industry in transition. Drawing on Michael Curtin‟s three media capital trajectories, the paper interprets tensions and challenges generated in the process of media industry agglomeration and growth in Beijing. Emphasis is placed on the third trajectory, socio-cultural variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used as a fire safety material in the building industry. Many research studies have been undertaken to investigate the thermal behaviour of plasterboards under standard fire conditions. However, there are many discrepancies in relation to the basic thermal properties of plasterboards while simple equations are not available to predict the ambient surface time–temperature profiles of gypsum plasterboard panels that can be used in simulating the behaviour and strength of steel studs or joists in load bearing LSF wall and floor systems. In this research, suitable thermal properties of plasterboards were proposed based on a series of tests and available results from past research. Finite element models of gypsum plasterboard panels were then developed to simulate their thermal behaviour under standard fire conditions. The accuracy of the proposed thermal properties and the finite element models was validated by comparing the numerical results with available fire test results of plasterboard panels. This paper presents the details of the finite element models of plasterboard panels, the thermal analysis results from finite element analyses under standard fire conditions and their comparisons with experimental results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing ecological awareness and stringent requirements for environmental protection have led to the development of water lubricated bearings in many applications where oil was used as the lubricant. The chapter details the theoretical analysis to determine both the static and dynamic characteristics,including the stability (using both the linearised perturbation method and the nonlinear transient analysis) of multiple axial groove water lubricated bearings. Experimental measurements and computational fluid dynamics (CFD) simulations by the Tribology research group at Queensland University of Technology,Australia and Manipal Institute of Technology, India, have highlighted a significant gap in the understanding of the flow phenomena and pressure conditions within the lubricating fluid. An attempt has been made to present a CFD approach to model fluid flow in the bearing with three equi-spaced axial grooves and supplied with water from one end of the bearing. Details of the experimental method used to measure the film pressure in the bearing are outlined. The lubricant is subjected to a velocity induced flow (as the shaft rotates) and a pressure induced flow (as the water is forced from one end of the bearing to the other). Results are presented for the circumferential and axial pressure distribution in the bearing clearance for different loads, speeds and supply pressures. The axial pressure profile along the axial groove located in the loaded part of the bearing is measured. The theoretical analysis shows that smaller the groove angle better will be the load-carrying capacity and stability of these bearings. Results are compared with experimentally measured pressure distributions.