976 resultados para and bacteria
Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly
Resumo:
Imbalance in the resident microbiota may promote the growth of opportunistic microorganisms, such as yeasts of Candida genus and the development of diseases, especially in aged people. This study evaluated whether the consumption of the probiotic Yakult LB® (Lactobacillus casei and Bifidobacterium breve) was able to influence on the specific immunological response against Candida and on the presence of these yeasts in the oral cavity of 42 healthy aged individuals. Saliva samples were collected before and after the probiotic use for 30 days, 3 times a week. The samples were plated in Dextrose Saboraud Agar with chloramphenicol, the colony-forming units (CFU/mL) were counted and the Candida species were identified. Anti-Candida IgA analysis was conducted using the ELISA technique. ANOVA and Student's t-test were used for normally distributed data and the Wilcoxon test was used for data with non-normal distribution (α=0.05). The results showed a statistically significant reduction (p<0.05) in Candida prevalence (from 92.9% to 85.7%), in CFU/mL counts of Candida and in the number of non-albicans species after consumption of the probiotic. Immunological analysis demonstrated a significant increase (p<0.05) in anti-Candida IgA levels. In conclusion, probiotic bacteria reduced Candida numbers in the oral cavity of the elderly and increased specific secretory immune response against these yeasts, suggesting its possible use in controlling oral candidosis.
Resumo:
The present invention describes a method for transforming chemolithotrophic acidophilic bacteria using electroporation technology. The proposed method allows transforming a bacterial line using a transformation vector, the pAF vector, which contains an origin of vegetative replication that allows the vector to replicate inside the bacteria without altering the natural physiological functions of the latter. Also disclosed is the use of the bacteria modified according to the invention in bioleaching processes of sulphated copper, gold, uranium, nickel, zinc and cobalt ore, inter alia.
A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.
Resumo:
Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Menthe piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia colt biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.
Resumo:
Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.
Resumo:
Biofilms represent a great concern for food industry, since they can be a source of persistent contamination leading to food spoilage and to the transmission of diseases. To avoid the adhesion of bacteria and the formation of biofilms, an alternative is the pre-conditioning of surfaces using biosurfactants, microbial compounds that can modify the physicochemical properties of surfaces changing bacterial interactions and consequently adhesion. Different concentrations of the biosurfactants, surfactin from Bacillus subtilis and rhamnolipids from Pseudomonas aeruginosa, were evaluated to reduce the adhesion and to disrupt biofilms of food-borne pathogenic bacteria. Individual cultures and mixed cultures of Staphylococcus aureus, Listeria monocytogenes and Salmonella Enteritidis were studied using polystyrene as the model surface. The pre-conditioning with surfactin 0.25% reduced by 42.0% the adhesion of L monocytogenes and S. Enteritidis, whereas the treatment using rhamnolipids 1.0% reduced by 57.8% adhesion of L monocytogenes and by 67.8% adhesion of S. aureus to polystyrene.Biosurfactants were less effective to avoid adhesion of mixed cultures of the bacteria when compared with individual cultures. After 2 h contact with surfactin at 0.1% concentration, the pre-formed biofilms of S. aureus were reduced by 63.7%, L. monocytogenesby 95.9%, S. Enteritidis by 35.5% and the mixed culture biofilm by 58.5%. The rhamnolipids at 0.25% concentration removed 58.5% the biofilm of S. aureus, 26.5% of L monocytogenes, 23.0% of S. Enteritidis and 24.0% the mixed culture after 2 h contact. In general, the increase in concentration of biosurfactants and in the time of contact decreased biofilm removal percentage. These results suggest that surfactin and rhamnolipids can be explored to control the attachment and to disrupt biofilms of individual and mixed cultures of the food-borne pathogens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
This study aimed to enumerate and identify lactic acid bacteria and Enterobacteriaceae from spoiled and nonspoiled chilled vacuum-packaged beef and determine their potential to cause blown pack spoilage. These microbial groups were also enumerated in nonspoiled samples and detected in abattoir samples. The potential of isolates to cause blown pack spoilage of vacuum-packaged beef stored at chilled temperature (4 degrees C) and abuse temperature (15 degrees C) was investigated. Populations of lactic acid bacteria in exudate of spoiled and nonspoiled samples were not significantly different (P > 0.05), whereas the number of lactic acid bacteria on the surface was significantly higher (P < 0.05) in spoiled samples as compared to nonspoiled samples. The population of Enterobacteriaceae species in exudate and on the surface of samples were significantly higher (P < 0.05) in spoiled packs in comparison with nonspoiled packs. Results of the deterioration potential showed that blown pack spoilage was noticeable after 7 days at 15 degrees C and after 6 weeks at 4 degrees C for samples inoculated with Hafnia alvei.
Resumo:
Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.