886 resultados para advertising countermeasures
Resumo:
In open railway access markets, a train service provider (TSP) negotiates with an infrastructure provider (IP) for track access rights. This negotiation has been modeled by a multi-agent system (MAS) in which the IP and TSP are represented by separate software agents. One task of the IP agent is to generate feasible (and preferably optimal) track access rights, subject to the constraints submitted by the TSP agent. This paper formulates an IP-TSP transaction and proposes a branch-and-bound algorithm for the IP agent to identify the optimal track access rights. Empirical simulation results show that the model is able to emulate rational agent behaviors. The simulation results also show good consistency between timetables attained from the proposed methods and those derived by the scheduling principles adopted in practice.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
Neural networks (NNs) are discussed in connection with their possible use in induction machine drives. The mathematical model of the NN as well as a commonly used learning algorithm is presented. Possible applications of NNs to induction machine control are discussed. A simulation of an NN successfully identifying the nonlinear multivariable model of an induction-machine stator transfer function is presented. Previously published applications are discussed, and some possible future applications are proposed.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
The configuration proposed in this paper aims to generate high voltage for pulsed power applications. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomena in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and finally the charged capacitors will be connected together in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulation models of this converter have been investigated in Matlab/SIMULINK platform and the attained results fully satisfy the proper operation of the converter.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies is the most substantial concern of pulsed power systems specifically with regard to plasma generation. Recently, the improvement of pulsed power supply has become of greater concern due to the extension of pulsed power applications to environmental and industrial areas. With this respect, a current source based topology is proposed in this paper as a pulsed power supply which gives the possibility of power flow control during load supplying mode. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations carried out in Matlab/SIMULINK platform as well as experimental tests on a prototype setup have verified the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
Background / context: The ALTC WIL Scoping Study identified a need to develop innovative assessment methods for work integrated learning (WIL) that encourage reflection and integration of theory and practice within the constraints that result from the level of engagement of workplace supervisors and the ability of academic supervisors to become involved in the workplace. Aims: The aim of this paper is to examine how poster presentations can be used to authentically assess student learning during WIL. Method / Approach: The paper uses a case study approach to evaluate the use of poster presentations for assessment in two internship units at the Queensland University of Technology. The first is a unit in the Faculty of Business where students majoring in advertising, marketing and public relations are placed in a variety of organisations. The second unit is a law unit where students complete placements in government legal offices. Results / Discussion: While poster presentations are commonly used for assessment in the sciences, they are an innovative approach to assessment in the humanities. This paper argues that posters are one way that universities can overcome the substantial challenges of assessing work integrated learning. The two units involved in the case study adopt different approaches to the poster assessment; the Business unit is non-graded and the poster assessment task requires students to reflect on their learning during the internship. The Law unit is graded and requires students to present on a research topic that relates to their internship. In both units the posters were presented during a poster showcase which was attended by students, workplace supervisors and members of faculty. The paper evaluates the benefits of poster presentations for students, workplace supervisors and faculty and proposes some criteria for poster assessment in WIL. Conclusions / Implications: The paper concludes that posters can effectively and authentically assess various learning outcomes in WIL in different disciplines while at the same time offering a means to engage workplace supervisors with academic staff and other students and supervisors participating in the unit. Posters have the ability to demonstrate reflection in learning and are an excellent demonstration of experiential learning and assessing authentically. Keywords: Work integrated learning, assessment, poster presentations, industry engagement.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Railway signaling facilitates two main functions, namely, train detection and train control, in order to maintain safe separations among the trains. Track circuits are the most commonly used train detection means with the simple open/close circuit principles; and subsequent adoption of axle counters further allows the detection of trains under adverse track conditions. However, with electrification and power electronics traction drive systems, aggravated by the electromagnetic interference in the vicinity of the signaling system, railway engineers often find unstable or even faulty operations of track circuits and axle counting systems, which inevitably jeopardizes the safe operation of trains. A new means of train detection, which is completely free from electromagnetic interference, is therefore required for the modern railway signaling system. This paper presents a novel optical fiber sensor signaling system. The sensor operation, field setup, axle detection solution set, and test results of an installation in a trial system on a busy suburban railway line are given.
Resumo:
The term “cloud computing” has emerged as a major ICT trend and has been acknowledged by respected industry survey organizations as a key technology and market development theme for the industry and ICT users in 2010. However, one of the major challenges that faces the cloud computing concept and its global acceptance is how to secure and protect the data and processes that are the property of the user. The security of the cloud computing environment is a new research area requiring further development by both the academic and industrial research communities. Today, there are many diverse and uncoordinated efforts underway to address security issues in cloud computing and, especially, the identity management issues. This paper introduces an architecture for a new approach to necessary “mutual protection” in the cloud computing environment, based upon a concept of mutual trust and the specification of definable profiles in vector matrix form. The architecture aims to achieve better, more generic and flexible authentication, authorization and control, based on a concept of mutuality, within that cloud computing environment.