971 resultados para Wheat blast
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
The biochemical properties of the alkaline phosphatases (AIPs) produced by Rhizopus micro-sporus are described. High enzymic levels were produced within 1-2 d in agitated cultures with 1% wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3x, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn(2+), Na(+) and Mg(2+) Stimulated the activity, while Al(3+) and Zn(2+) activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 degrees C and pH 8.0, respectively. The enzymes were stable at 50 degrees C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K(m) 0.28 and 0.22 mmol/L, with upsilon(lim) 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Resumo:
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 A degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 A degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.
Resumo:
The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4-5 days in liquid medium at 40A degrees C, under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60-70A degrees C. The enzymes were stable for 30 min at 60A degrees C, maintaining 95-98% of the initial activity. After 1 h at this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5-5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0-8.0, while the enzyme from A. niveus was more stable at pH 4.5-6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus.
Resumo:
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 degrees C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 degrees C and 50-55 degrees C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 degrees C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu(++) and Mn(++) increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.
Resumo:
Experiments were conducted to investigate the effect of Lolium rigidum (annual ryegrass) seed developmental stage and application rate of glyphosate and SpraySeed (paraquat 135 g/L+ diquat 115 g/L) on the number, germinability, and fitness of seeds produced. Glyphosate (450 g/L) was most effective when applied at a rate of 0.5-1 L/ha during heading and anthesis, reducing the number of filled seeds produced compared with unsprayed plants. Application post-anthesis, when seeds were at the milk to soft dough stage, was less effective. SpraySeed was most effective when applied post-anthesis, during the milk and early dough stages of seed development at a rate of 0.5-1L/ha, resulting in the production of few viable seeds. Although some filled seeds were produced, most of the seeds were dead. Application during anthesis or once the seeds reached soft dough stage was less effective. For both herbicides, those seeds that were capable of germinating were smaller and had slower radicle and coleoptile growth, resulting in slower early seedling growth and reduced biomass production within the first month of growth. Additionally, glyphosate application reduced the proportion of seeds exhibiting dormancy. The anticipated reduction in seed competitive ability and altered emergence timing resulting from late-season herbicide application, even when application timing is not optimal, could be exploited to reduce the likelihood of successful L. rigidum establishment in the following season.
Resumo:
The Ordos Plateau in China is covered with up to 300,000 ha of peashrub (Caragana) which is the dominant natural vegetation and ideal for fodder production. To exploit peashrub fodder, it is crucially important to optimize the culture conditions, especially culture substrate to produce pectinase complex. In this study, a new prescription process was developed. The process, based on a uniform experimental design, first optimizes the solid substrate and second, after incubation, applies two different temperature treatments (30 degrees C for the first 30 h and 23 degrees C for the second 42 h) in the fermentation process. A multivariate regression analysis is applied to a number of independent variables (water, wheat bran, rice dextrose, ammonium sulfate, and Tween 80) to develop a predictive model of pectinase activity. A second-degree polynomial model is developed which accounts for an excellent proportion of the explained variation (R-2 = 97.7%). Using unconstrained mathematical programming, an optimized substrate prescription for pectinase production is subsequently developed. The mathematical analysis revealed that the optimal formula for pectinase production from Aspergillus niger by solid fermentation under the conditions of natural aeration, natural substrate pH (about 6.5), and environmental humidity of 60% is rice dextrose 8%, wheat bran 24%, ammonium sulfate ((NH4)(2)SO4) 6%, and water 61%. Tween 80 was found to have a negative effect on the production of pectinase in solid substrate. With this substrate prescription, pectinase produced by solid fermentation of A. niger reached 36.3IU/(gDM). Goats fed on the pectinase complex obtain an incremental increase of 0.47 kg day(-1) during the initial 25 days of feeding, which is a very promising new feeding prospect for the local peashrub. It is concluded that the new formula may be very useful for the sustainable development of and and semiarid pastures such as those of the Ordos Plateau. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
The goal of the current study was to compare the quality of esophageal speech and voice to videofluoroscopic features of the esophagus and pharyngoesophageal (PE) segment. The speech and voice characteristics of 30 laryngectomized patients were rated by 5 speech-language pathologists. Based on these ratings, patients were divided into 3 categories: fluent (n = 9), moderately fluent (n = 10) and nonfluent (n = 11). Videofluoroscopy of the PE region was then performed during both swallowing and voice production. An insufflation test and percutaneous pharyngeal plexus block were required in 9 patients to determine the etiology of poor esophageal voice production. The strongest videofluoroscopic indicators of nonfluent speakers were: (1) small or absent air reservoir and (2) lack of a vibrating PE segment. Fluent speakers presented with shorter PE segments (1.17 mm) compared to moderately fluent speakers (17.1-29.9 mm). Perceptually, fluent speakers presented with a predominantly rough vocal quality. In contrast, moderately fluent speakers presented with a tense quality. In addition, stoma blast noise was reduced in fluent speakers. Videofluoroscopic findings highly correlated with the quality of esophageal speech. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Leukostasis is a relatively uncommon but potentially catastrophic complication of acute myelogenous leukemia (AML). Prompt leukoreduction is considered imperative to reduce the high mortality rate in this condition. Leukapheresis, usually associated with chemotherapy, is an established approach to diminish blast cell counts. We report a single center experience in managing leukostasis with leukapheresis. Fifteen patients with leukostasis of 187 patients with AML (8.02%) followed at our institution were treated with leukapheresis associated with chemotherapy. The procedures were scheduled to be performed on a daily basis until clinical improvement was achieved and WBC counts were significantly reduced. Overall and early mortalities, defined as that occurred in the first 7 days from diagnosis, were reported. A high proportion of our patients with leukostasis (46.66%) had a monocytic subtype AML (M4/M5, according to French-American-British classification). The median overall survival was 10 days, despite a significant WBC reduction after the first apheresis procedure (from 200.7 X 10(9)/L to 150.3 X 10(9)/L). Almost half of patients (7/15) had an early death. Therapeutic leukapheresis, associated or not to chemotherapy, is an effective approach to reduce WBC counts in patients with AML and leukostasis; however, this therapeutic procedure does not appear to change significantly the sombre prognosis observed in the majority of patients with this complication. Other forms of treatment must be found to reduce the high mortality rate related to leukostasis. J. Clin. Apheresis 26:181-185, 2011. (C) 2011 Wiley-Liss, Inc.