956 resultados para Variance-covariance Matrices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualising data for exploratory analysis is a big challenge in scientific and engineering domains where there is a need to gain insight into the structure and distribution of the data. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are used, but it is difficult to incorporate prior knowledge about structure of the data into the analysis. In this technical report we discuss a complementary approach based on an extension of a well known non-linear probabilistic model, the Generative Topographic Mapping. We show that by including prior information of the covariance structure into the model, we are able to improve both the data visualisation and the model fit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations were undertaken to study the role of the protein cross-linking enzyme tissue transglutaminase in changes associated with the extracellular matrix and in the cell death of human dermal fibroblasts following exposure to a solarium ultraviolet A source consisting of 98.8% ultraviolet A and 1.2% ultraviolet B. Exposure to nonlethal ultraviolet doses of 60 to 120 kJ per m2 resulted in increased tissue transglutaminase activity when measured either in cell homogenates, "in situ" by incorporation of fluorescein-cadaverine into the extracellular matrix or by changes in the epsilon(gamma-glutamyl) lysine cross-link. This increase in enzyme activity did not require de novo protein synthesis. Incorporation of fluorescein-cadaverine into matrix proteins was accompanied by the cross-linking of fibronectin and tissue transglutaminase into nonreducible high molecular weight polymers. Addition of exogenous tissue transglutaminase to cultured cells mimicking extensive cell leakage of the enzyme resulted in increased extracellular matrix deposition and a decreased rate of matrix turnover. Exposure of cells to 180 kJ per m2 resulted in 40% to 50% cell death with dying cells showing extensive tissue transglutaminase cross-linking of intracellular proteins and increased cross-linking of the surrounding extracellular matrix, the latter probably occurring as a result of cell leakage of tissue transglutaminase. These cells demonstrated negligible caspase activation and DNA fragmentation but maintained their cell morphology. In contrast, exposure of cells to 240 kJ per m2 resulted in increased cell death with caspase activation and some DNA fragmentation. These cells could be partially rescued from death by addition of caspase inhibitors. These data suggest that changes in cross-linking both in the intracellular and extracellular compartments elicited by tissue transglutaminase following exposure to ultraviolet provides a rapid tissue stabilization process following damage, but as such may be a contributory factor to the scarring process that results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Manakov-PMD equation can be integrated with the same numerical efficiency as the coarse-step method by using precomputed M(Ω) matrices, which entirely avoids the somewhat ad-hoc rescaling of coefficients necessary in the coarse-step method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical properties of sparse random matrices over finite (Galois) fields are studied, in the limit of large matrices, using techniques from the physics of disordered systems. For the case of a finite field GF(q) with prime order q, we present results for the average kernel dimension, average dimension of the eigenvector spaces and the distribution of the eigenvalues. The number of matrices for a given distribution of entries is also calculated for the general case. The significance of these results to error-correcting codes and random graphs is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-way design has been variously described as a matched-sample F-test, a simple within-subjects ANOVA, a one-way within-groups ANOVA, a simple correlated-groups ANOVA, and a one-factor repeated measures design! This confusion of terminology is likely to lead to problems in correctly identifying this analysis within commercially available software. The essential feature of the design is that each treatment is allocated by randomization to one experimental unit within each group or block. The block may be a plot of land, a single occasion in which the experiment was performed, or a human subject. The ‘blocking’ is designed to remove an aspect of the error variation and increase the ‘power’ of the experiment. If there is no significant source of variation associated with the ‘blocking’ then there is a disadvantage to the two-way design because there is a reduction in the DF of the error term compared with a fully randomised design thus reducing the ‘power’ of the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an alternative model of the 1-way ANOVA called the 'random effects' model or ‘nested’ design in which the objective is not to test specific effects but to estimate the degree of variation of a particular measurement and to compare different sources of variation that influence the measurement in space and/or time. The most important statistics from a random effects model are the components of variance which estimate the variance associated with each of the sources of variation influencing a measurement. The nested design is particularly useful in preliminary experiments designed to estimate different sources of variation and in the planning of appropriate sampling strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than simply the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, in a factorial experiment, it is important to define the design of the experiment in detail because this determines the appropriate type of ANOVA. We will discuss some of the common variations of factorial ANOVA in future statnotes. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some experimental situations, the factors may not be equivalent to each other and replicates cannot be assigned at random to all treatment combinations. A common case, called a ‘split-plot design’, arises when one factor can be considered to be a major factor and the other a minor factor. Investigators need to be able to distinguish a split-plot design from a fully randomized design as it is a common mistake for researchers to analyse a split-plot design as if it were a fully randomised factorial experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the sample size required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for the error term of the ANOVA testing effects of particular interest. Finally, it is important to always consider the design of the experiment because this determines the appropriate ANOVA to use. Hence, it is necessary to be able to identify the different forms of ANOVA appropriate to different experimental designs and to recognise when a design is a split-plot or incorporates a repeated measure. If there is any doubt about which ANOVA to use in a specific circumstance, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many circumstances, it may be of interest to discover whether two or more regression lines are the same. Regression lines may differ in three properties, viz., in residual variance, in slope, and in elevation; all of which can be tested using analysis of covariance. If there are no significant differences between regression lines, an investigator may which to combine the data from different studies and fit a single regression line to the whole of the data.