907 resultados para Unconstrained minimization
Resumo:
Leg 165 of the Ocean Drilling Program afforded a unique opportunity to investigate organic and inorganic geochemistry across a wide gradient of sediment compositions and corresponding chemical pathways. The solid fractions at Sites 998, 999, 1000, and 1001 reveal varying proportions of reactive carbonate species, a labile volcanic ash fraction occurring in discrete layers and as a dispersed component, and detrital fluxes that derive from continental weathering. The relative proportions and reactivities of these end-members strongly dictate the character of the diagenetic profiles observed during the pore-water work of Leg 165. In addition, alteration of the well-characterized basaltic basement at Site 1001 has provided a strong signal that is reflected in many of the dissolved components. The relative effects of basement alteration and diagenesis within the sediment column are discussed in terms of downcore relationships for dissolved calcium and magnesium. With the exception of Site 1002 in the Cariaco Basin, the sediments encountered during Leg 165 were uniformly deficient in organic carbon (typically <0.1 wt%). Consequently, rates of organic oxidation were generally low and dominated by suboxic pathways with subordinate levels of bacterial sulfate reduction and methanogenesis. The low rates of organic remineralization are supported by modeled rates of sulfate reduction. Site 1000 provided an exception to the generally low levels of microbially mediated redox cycling. At this site the sediment is slightly more enriched in organic phases, and externally derived thermogenic hydrocarbons appear to aid in driving enhanced levels of redox diagenesis at great depths below the seafloor. The entrapment of these volatiles corresponds with a permeability seal defined by a pronounced Miocene minimum in calcium carbonate concentration recognized throughout the basin and with a dramatic downcore increase in the magnitude of limestone lithification. The latter has been tentatively linked to increases in alkalinity associated with microbial oxidation of organic matter and gaseous hydrocarbons. Recognition and quantification of previously unconstrained large volumes and frequencies of Eocene and Miocene silicic volcanic ash within the Caribbean Basin is one of the major findings of Leg 165. High frequencies of volcanic ash layers manifest as varied but often dominant controls on pore-water chemistry. Sulfur isotope results are presented that speak to secondary metal and sulfur enrichments observed in ash layers sampled during Leg 165. Ultimately, a better mechanistic understanding of these processes and the extent to which they have varied spatially and temporally may bear on the global mass balances for a range of major and minor dissolved components of seawater.
Resumo:
The police use both subjective (i.e. police staff) and automated (e.g. face recognition systems) methods for the completion of visual tasks (e.g person identification). Image quality for police tasks has been defined as the image usefulness, or image suitability of the visual material to satisfy a visual task. It is not necessarily affected by any artefact that may affect the visual image quality (i.e. decrease fidelity), as long as these artefacts do not affect the relevant useful information for the task. The capture of useful information will be affected by the unconstrained conditions commonly encountered by CCTV systems such as variations in illumination and high compression levels. The main aim of this thesis is to investigate aspects of image quality and video compression that may affect the completion of police visual tasks/applications with respect to CCTV imagery. This is accomplished by investigating 3 specific police areas/tasks utilising: 1) the human visual system (HVS) for a face recognition task, 2) automated face recognition systems, and 3) automated human detection systems. These systems (HVS and automated) were assessed with defined scene content properties, and video compression, i.e. H.264/MPEG-4 AVC. The performance of imaging systems/processes (e.g. subjective investigations, performance of compression algorithms) are affected by scene content properties. No other investigation has been identified that takes into consideration scene content properties to the same extend. Results have shown that the HVS is more sensitive to compression effects in comparison to the automated systems. In automated face recognition systems, `mixed lightness' scenes were the most affected and `low lightness' scenes were the least affected by compression. In contrast the HVS for the face recognition task, `low lightness' scenes were the most affected and `medium lightness' scenes the least affected. For the automated human detection systems, `close distance' and `run approach' are some of the most commonly affected scenes. Findings have the potential to broaden the methods used for testing imaging systems for security applications.
Resumo:
This paper compares different optimization strategies for the minimization of flight and passenger delays at two levels: pre-tactical, with on-ground delay at origin, and tactical, with airborne delay close to the destination airport. The optimization model is based on the ground holding problem and uses various cost functions. The scenario considered takes place in a busy European airport and includes realistic values of traffic. Uncertainty is introduced in the model for the passenger allocation, minimum time required for turnaround and tactical uncertainty. Performance of the various optimization processes is presented and compared to ratio by schedule results.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
Resumo:
The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.
Resumo:
[EN]Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Le Système Stockage de l’Énergie par Batterie ou Batterie de Stockage d’Énergie (BSE) offre de formidables atouts dans les domaines de la production, du transport, de la distribution et de la consommation d’énergie électrique. Cette technologie est notamment considérée par plusieurs opérateurs à travers le monde entier, comme un nouveau dispositif permettant d’injecter d’importantes quantités d’énergie renouvelable d’une part et d’autre part, en tant que composante essentielle aux grands réseaux électriques. De plus, d’énormes avantages peuvent être associés au déploiement de la technologie du BSE aussi bien dans les réseaux intelligents que pour la réduction de l’émission des gaz à effet de serre, la réduction des pertes marginales, l’alimentation de certains consommateurs en source d’énergie d’urgence, l’amélioration de la gestion de l’énergie, et l’accroissement de l’efficacité énergétique dans les réseaux. Cette présente thèse comprend trois étapes à savoir : l’Étape 1 - est relative à l’utilisation de la BSE en guise de réduction des pertes électriques ; l’Étape 2 - utilise la BSE comme élément de réserve tournante en vue de l’atténuation de la vulnérabilité du réseau ; et l’Étape 3 - introduit une nouvelle méthode d’amélioration des oscillations de fréquence par modulation de la puissance réactive, et l’utilisation de la BSE pour satisfaire la réserve primaire de fréquence. La première Étape, relative à l’utilisation de la BSE en vue de la réduction des pertes, est elle-même subdivisée en deux sous-étapes dont la première est consacrée à l’allocation optimale et le seconde, à l’utilisation optimale. Dans la première sous-étape, l’Algorithme génétique NSGA-II (Non-dominated Sorting Genetic Algorithm II) a été programmé dans CASIR, le Super-Ordinateur de l’IREQ, en tant qu’algorithme évolutionniste multiobjectifs, permettant d’extraire un ensemble de solutions pour un dimensionnement optimal et un emplacement adéquat des multiple unités de BSE, tout en minimisant les pertes de puissance, et en considérant en même temps la capacité totale des puissances des unités de BSE installées comme des fonctions objectives. La première sous-étape donne une réponse satisfaisante à l’allocation et résout aussi la question de la programmation/scheduling dans l’interconnexion du Québec. Dans le but de réaliser l’objectif de la seconde sous-étape, un certain nombre de solutions ont été retenues et développées/implantées durant un intervalle de temps d’une année, tout en tenant compte des paramètres (heure, capacité, rendement/efficacité, facteur de puissance) associés aux cycles de charge et de décharge de la BSE, alors que la réduction des pertes marginales et l’efficacité énergétique constituent les principaux objectifs. Quant à la seconde Étape, un nouvel indice de vulnérabilité a été introduit, formalisé et étudié ; indice qui est bien adapté aux réseaux modernes équipés de BES. L’algorithme génétique NSGA-II est de nouveau exécuté (ré-exécuté) alors que la minimisation de l’indice de vulnérabilité proposé et l’efficacité énergétique représentent les principaux objectifs. Les résultats obtenus prouvent que l’utilisation de la BSE peut, dans certains cas, éviter des pannes majeures du réseau. La troisième Étape expose un nouveau concept d’ajout d’une inertie virtuelle aux réseaux électriques, par le procédé de modulation de la puissance réactive. Il a ensuite été présenté l’utilisation de la BSE en guise de réserve primaire de fréquence. Un modèle générique de BSE, associé à l’interconnexion du Québec, a enfin été proposé dans un environnement MATLAB. Les résultats de simulations confirment la possibilité de l’utilisation des puissances active et réactive du système de la BSE en vue de la régulation de fréquence.