902 resultados para Treadmill running
Resumo:
Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.
Resumo:
Reliable means of predicting ingestion in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper, analysis is to be presented that results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities. Extensive use is made of CFD modelling techniques to understand the aerodynamic behaviour of a turbine stator well cavity, focusing on the interaction of cooling air supply with the main annulus gas. The objective of the study has been to benchmark a number of CFD codes and numerical techniques covering RANS and URANS calculations with different turbulence models in order to assess the suitability of the standard settings used in the industry for calculating the mechanics of the flow travelling between cavities in a turbine through the main gas path. The modelling methods employed have been compared making use of experimental data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The limitations of the numerical methods in calculating the interaction of the cooling flow egress and the main stream gas, and subsequent ingestion into downstream cavities in the engine (i.e. re-ingestion), have been exposed. This has been done without losing sight of the validation of the CFD for its use for predicting heat transfer, which was the main objective of the partners of the MAGPI Work- Package 1 consortium. Copyright © 2012 by ASME.
Resumo:
A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.
Resumo:
Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.
Resumo:
This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.
Resumo:
Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g., physical interactions between feet and ground, skeletons and muscle-tendon systems), and distributed informational processes (e.g., sensory information processing, sensory-motor control in central nervous system, and reflexes) [21]. An interesting aspect of legged locomotion study lies in the fact that there are multiple levels of self-organization processes (at the levels of mechanical dynamics, sensory-motor control, and learning). Previously, the self-organization of mechanical dynamics was nicely demonstrated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a purely mechanical structure consisting of body, thigh, and shank limbs that are connected by passive joints. When placed on a shallow slope, it exhibits natural bipedal walking dynamics by converting potential to kinetic energy without any actuation. An important contribution of these case studies is that, if designed properly, mechanical dynamics can generate a relatively complex locomotion dynamics, on the one hand, and the mechanical dynamics induces self-stability against small disturbances without any explicit control of motors, on the other. The basic principle of the mechanical self-stability appears to be fairly general that there are several different physics models that exhibit similar characteristics in different kinds of behaviors (e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic platforms have been developed based on them [1, 8, 13, 22]. © 2009 Springer London.
Resumo:
As observed in nature, complex locomotion can be generated based on an adequate combination of motor primitives. In this context, the paper focused on experiments which result in the development of a quality criterion for the design and analysis of motor primitives. First, the impact of different vocabularies on behavioural diversity, robustness of prelearned behaviours and learning process is elaborated. The experiments are performed with the quadruped robot MiniDog6M for which a running and standing up behaviour is implemented. Further, a reinforcement learning approach based on Q-learning is introduced which is used to select an adequate sequence of motor primitives. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
In this paper a new kind of hopping robot has been designed which uses inverse pendulum dynamics to induce bipedal hopping gaits. Its mechanical structure consists of a rigid inverted T-shape mounted on four compliant feet. An upright "T" structure is connected to this by a rotary joint. The horizontal beam of the upright "T" is connected to the vertical beam by a second rotary joint. Using this two degree of freedom mechanical structure, with simple reactive control, the robot is able to perform hopping, walking and running gaits. During walking, it is experimentally shown that the robot can move in a straight line, reverse direction and control its turning radius. The results show that such a simple but versatile robot displays stable locomotion and can be viable for practical applications on uneven terrain.
Resumo:
The tribological behaviors and phase transformation of single crystal silicon against Si3N4, Ruby and steel were investigated in this study. It was found that the strong chemical action between silicon and Fe was the key factor to the tribological behavior of silicon as slid against steel. SEM and Raman spectroscopy indicated that phase transformation of single crystal silicon occurred during the running-in period at low sliding velocity as slid against Si3N4 and Ruby. and gave birth to single or a mixture phase of Si-III, Si-XII and amorphous silicon. The high hardness of counterpart and the absence of chemical action between silicon and counterpart facilitated the phase transformation of single crystal silicon. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
Web services can be seen as a newly emerging research area for Service-oriented Computing and their implementation in Service-oriented Architectures. Web services are self-contained, self-describing modular applications or components providing services. Web services may be dynamically aggregated, composed, and enacted as Web services Workflows. This requires frameworks and interaction protocols for their co-ordination and transaction support. In a Service-oriented Computing setting, transactions are more complex, involve multiple parties (roles), span many organizations, and may be long-running, consisting of a highly decentralized service partner and performed by autonomous entities. A Service-oriented Transaction Model has to provide comprehensive support for long-running propositions including negotiations, conversations, commitments, contracts, tracking, payments, and exception handling. Current transaction models and mechanisms including their protocols and primitives do not sufficiently cater for quality-aware and long running transactions comprising loosely-coupled (federated) service partners and resources. Web services transactions require co-ordination behavior provided by a traditional transaction mechanism to control the operations and outcome of an application. Furthermore, Web services transactions require the capability to handle the co-ordination of processing outcomes or results from multiple services in a more flexible manner. This requires more relaxed forms of transactions—those that do not strictly have to abide by the ACID properties—such as loosely-coupled collaboration and workflows. Furthermore, there is a need to group Web services into applications that require some form of correlation, but do not necessarily require transactional behavior. The purpose of this paper is to provide a state-of-the-art review and overview of some proposed standards surrounding Web services composition, co-ordination, and transaction. In particular the Business Process Execution Language for Web services (BPEL4WS), its co-ordination, and transaction frameworks (WS-Co-ordination and WS-Transaction) are discussed.
Resumo:
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Design and Operation of A 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant
Resumo:
The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.
Resumo:
In a slagging combustor or furnace, the high combustion temperature makes the molten slag layer cover the wall and capture the particles. If these particles contain combustible matter, they will continue to burn on the running slag. As a result, the total amount of ash deposition will be much greater than that in dry-wall combustors and the total heat flux through the deposition surface will change greatly. Considering the limitations of existing simulation methods for slagging combustion, this paper introduces a new wall burning model and slag flow model from the analysis; of particle deposition phenomena. Combined with a conventional combustion simulation program, the total computational frame is introduced. From comparisons of simulation results from several kinds of methods with experimental data, the conclusion is drawn that the conventional simulation methods are not very suitable for slagging combustion and the wall burning mechanism should be considered more thoroughly.
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.