975 resultados para Trace elements - Speciation - Tasmania
Resumo:
A review of interstitial water samples collected from Sites 1003-1007 of the Bahamas Transect along with a shore-based analysis of oxygen and carbon isotopes, minor and trace elements, and sediment chemistry are presented. Results indicate that the pore-fluid profiles in the upper 100 meters below seafloor (mbsf) are marked by shifts between 20 and 40 mbsf that are thought to be caused by changes in sediment reactivity, sedimentation rates, and the influence of strong bottom currents that have been active since the late Pliocene. Pore-fluid profiles in the lower Pliocene-Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved through interaction with sediments and diffusion. Pore-fluid chemistry is strongly influenced by carbonate recrystallization processes. Increases in pore-fluid Cl- and Na+ with depth are interpreted to result mainly from carbonate remineralization reactions that are most active near the platform margin. A lateral gradient in detrital clay content observed along the transect, leads to an overall lower carbonate reactivity, and enhances preservation of metastable aragonite further away from the platform margin. Later stage burial diagenesis occurs at slow rates and is limited by the supply of reactive elements through diffusion.
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
Resumo:
During ODP Leg 107, two holes were drilled in the basement of Vavilov Basin, a central oceanic area of the Tyrrhenian sea. Hole 655B is located near the Gortani ridge in off-axis position at the western rim of the basin; Hole 651A is located on a basement swell at the axis of the basin. This paper deals with mineral chemistry, major and trace element geochemistry, and petrogenesis of the basalts recovered in the two holes. The mineralogy of the basalts is broadly homogeneous, but all of them have suffered important seawater alteration. Their major-element compositions are similar to both normal-mid-ocean-ridge-basalts (N-MORB) and back-arc-basalts (BAB) except for Na2O contents (BAB-like), and K2O which is somewhat enriched in upper unit of Hole 651 A. Their affinity with N-MORB and BAB is confirmed by using immobile trace elements such as Zr, Y, and Nb. However, basalts from the two sites present contrasting geochemical characteristics on spidergrams using incompatible elements. Hole 655B basalts are homogeneous enriched tholeiites, similar to those from DSDP Hole 373 (located on the opposite side of the basin near the eastern rim), and show affinities with enriched MORB (E-MORB). At Hole 651 A, the two basalt units are chemically distinct. One sample recovered in lower unit is rather similar to those from Hole 655B, but basalts from upper unit display calc-alkaline characteristic evidenced by the increase of light-ion-lithophile-element (LILE)/high-field-strength-element (HFSE) ratio, and appearance of a negative Nb-anomaly, making them comparable with orogenic lavas from the adjacent Eolian arc. The observed chemical compositions of the basalts are consistent with a derivation of the magmas from a N-MORB type source progressively contaminated by LILE-enriched fluids released from dehydration of the bordering subducted plate. Implications for evolution of the Tyrrhenian basin are tentatively proposed taking into consideration geochemical and chronological relationships between basalts from Leg 107 Holes 655B and 651 A, together with data from Leg 42 Site 373 and Vavilov Seamount. These data illustrate back-arc spreading in ensialic basin closely associated with the maturation of the adjacent subduction, followed by the growth of late off-axis central volcano, whereas the active subduction retreats southeastward.
Resumo:
New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.
Resumo:
From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.
Resumo:
In order to assess recent submarine volcanic contributions to the sediments from the active Kolbeinsey Ridge, surface samples were analyzed chemically. The contribution of major and trace elements studied differ within the study area. A statistical analysis of the geochemical variables using factor analysis and cluster method allows to distinguish possible sample groups. Cluster method identifies three distinct sediment groups located in different areas of sedimentation. Group 1 is characterized by highest contents of Fe2O3, V, Co, Ni, Cu and Zn demonstrating the input of volcaniclastic material. Group 2 comprises high values of CaCO3, CaO and Sr representing biogenic carbonate. Group 3 is characterized by the elements K, Rb, Cs, La and Pb indicating the terrigenous component. The absolute percentage of the volcanic, biogenic and terrigenous components in the bulk sediments was calculated by using a normative sediment method. The highest volcanic component (> 60% on a carbonate free basis) is found on the ridge crest. The biogenic component is highest (10-30%) in the eastern part of the Spar Fracture Zone influenced by the East Iceland Current. Samples from the western and southeastern region of the study area contain more than 90% of terrigenous component which appears to be mainly controlled by input of ice-rafted debris.
Resumo:
Bulk chemistry and trace elements data were measured in 72 samples, selected from 5 basement sections, which have been recovered by Leg 60 drilling (Sites 453, 454, 456, 458, and 459). According to analytical results a metagabbro- metabasalt breccia, deposited about 5 Ma at the westernmost flank of the Mariana Trough (Site 453), was derived from an island arc source. Basalts from the Mariana Trough (Sites 454 and 456) are similar in many respects to midoceanic ridge basalts (MORB). Yet rocks of unusual geochemistry, reflecting the possible influence of arc volcanism, were found among the pillow lavas at the easternmost trough (Site 456). The acoustic basement in the Mariana fore-arc region was formed by submarine eruptions of arc tholeiites (Sites 458 and 459) and peculiar high-MgO andesites related to the boninite suite.
Resumo:
Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
Here we present a high-resolution faunal, floral and geochemical (stable isotopes and trace elements) record from the sediments of Ocean Drilling Program Site 963 (central Mediterranean basin), which shows centennial/millennial-scale resemblance to the high-northern latitude rapid temperature fluctuations documented in the Greenland ice cores between 20 and 70 kyr BP. Oxygen and carbon isotopes, planktic foraminifera and calcareous nannofossil distributions suggest that Dansgaard-Oeschger (D/O) and Heinrich events (HE) are distinctly expressed in the Mediterranean climate record. Moreover, recurrent though subdued oscillations not previously identified in the Lateglacial Mediterranean sediments document a significant centennial-scale climate variability in the basin that is greater than previously thought. Alternations between climate regimes dominated by polar outbreaks during D/O stadials and warm D/O interstadials, with associated intensification of continental runoff, are well expressed in the ODP Site 963. These place the Mediterranean basin as an often overlooked recorder of the interplay between large- and regional- scale climate controls at intermediate latitudes, and of the possible interactions between different components of the climate system. Significant changes in Ba/Ca values measured in Globigerinoides ruber shells from a number of D/O stadials and interstadials suggest enhanced freshwater input from the north-eastern Mediterranean borderland during the D/O interstadials. However, the short duration of 3D stratification events never led to complete oxygen consumption along the water column, but clear effects of sluggish 3D circulation in the basin are testified to by negative excursions in d13C measured in selected species of planktic and benthic foraminifera. HEs are constantly associated with lightening in the d18O record of planktic foraminifera, possibly because of the impact of iceberg melting in the Iberian Margin on Mediterranean thermohaline circulation. Interestingly, in two cases in particular, HE2 and HE5, fresher water inputs also affected deeper horizons of intermediate waters, suggesting a basin-wide impact.
Resumo:
Titanomagnetites separated from 15 different rock samples (including ocean-floor basalts from DSDP Legs 37, 45 and 46) were analyzed together with whole-rock samples by instrumental neutron-activation analysis for Sc, Cr, Co, Zn, Hf, Ta, Th and the REE La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb and Lu. In titanomagnetities from ocean-floor basalts and some other rocks, REE are enriched with respect to the whole-rock composition by factors of between 1.5 and 3 for light REE and between 1.0 and 1.9 for heavy REE; that is, REE with larger ionic radii are preferentially incorporated into the magnetite lattice. Three magnetite samples are REE depleted. Their whole-rock samples contain P in appreciable amounts, so apatite, an important REE-accumulating mineral, could have captured REE to some extent. All titanomagnetites show a marked negative Eu anomaly, this is most probably caused by discrimination of Eu(2+) from the magnetite lattice. Co, Zn, Hf and Ta are significantly enriched in magnetites. The distribution behaviour of Sc and Cr is masked chiefly by the crystallization of clinopyroxene and therefore is not easy to estimate. Ulvöspinel contents of about 70% for the titanomagnetites from ocean-floor basalts were estimated from qualitative microprobe analysis. Ulvöspinel contents of all other samples varied in a wide range from 20% to about 90%. No correlation could be observed between this and the REE contents of the magnetites. Ilmenite exsolution lamellae could only be observed in titanomagnetites from a doleritic basalt from Leg 45.
Resumo:
Thirty-eight samples from DSDP Sites 549 to 551 were analyzed for major and minor components and trace element abundances. Multivariate statistical analysis of geochemical data groups the samples into two major classes: an organic-carbon- rich group (> 1% TOC) containing high levels of marine organic matter and certain trace elements (Cu, Zn, V, Ni, Co, Ba, and Cr) and an organic-carbon-lean group depleted in these components. The greatest organic and trace metal enrichments occur in the uppermost Albian to Turanian sections of Sites 549 to 551. Carbon-isotopic values of bulk carbonate for the middle Cenomanian section of Site 550 (2.35 to 2.70 per mil) and the upper Cenomanian-Turonian sections of Sites 549 (3.35 to 4.47 per mil) and 551 (3.13 to 3.72 per mil) are similar to coeval values reported elsewhere in the region. The relatively heavy d13C values from Sites 549 and 551 indicate that this interval was deposited during the global "oceanic anoxic event" that occurred at the Cenomanian/Turonian boundary. Variation in the d18O of bulk carbonate for Section 550B-18-1 of middle Cenomanian age suggests that paleosalinity and/or paleotemperature variations may have occurred concurrently with periodic anoxia at this site. Climatically controlled increases in surface-water runoff may have caused surface waters to periodically freshen, resulting in stable salinity stratification
Resumo:
Petrography, major and trace elements, mineral chemistry, and Sr, Nd, and Pb isotopic ratios are reported for igneous rocks drilled on the northern flank of the North d'Entrecasteaux Ridge (NDR) during Ocean Drilling Program (ODP) Leg 134 Site 828. These rocks comprise a breccia unit beneath a middle Eocene foraminiferal ooze. Both geophysical characteristics and the variety of volcanic rocks found at the bottom of Holes 828A and 828B indicate that a very immature breccia or scree deposit was sampled. Basalts are moderately to highly altered, but primary textures are well preserved. Two groups with different magmatic affinities, unrelated to the stratigraphic height, have been distinguished. One group consists of aphyric to sparsely plagioclase + clinopyroxene-phyric basalts, characterized by high TiO2 (~2 wt%) and low Al2O3 (less than 15 wt%) contents, with flat MORB-normalized incompatible element patterns and LREE-depleted chondrite-normalized REE patterns. This group resembles N-MORB. The other group comprises moderately to highly olivine + plagioclase-phyric basalts with low TiO2 (<1 wt%) and high Al2O3 (usually >15 wt%) contents, and marked HFSE depletion and LFSE enrichment. Some lavas in this group are picritic, with relatively high modal olivine abundances, and MgO contents up to 15 wt%. Both the basalts and picritic basalts of this group reflect an influence by subduction-related processes, and have compositions transitional between MORB and IAT. Lavas with similar geochemical features have been reported from small back-arc basins such as the Mariana Trough, Lau Basin, Sulu Sea, and the North Fiji Basin and are referred to as back-arc basin basalts. However, regional tectonic considerations suggest that the spreading that produced these backarc basin basalts may have occurred in the forearc region of the southwest-facing island arc that existed in this region in the Eocene.
Resumo:
Gabbroic xenoliths and diverse megacrysts (e.g., clinopyroxenes, amphiboles and plagioclases), which correspond to the lithology ranging from gabbro-norite to gabbro, occur in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The gabbroic xenoliths consist primarily of moderate-K2O plagioclase, Ti-Al-rich clinopyroxene and CaO-rich orthopyroxene; additionally, TiO2-rich amphibole (kaersutite) and Ti-Fe oxides might or might not be present. The plagioclase is the most dominant phase (approx. 60-70 vol.%). The xenoliths and megacrysts provide evidence for the modal metasomatism of the lower continental crust by the mafic magmas during the Pleistocene. The coarse grain size (up to 5 mm), moderate Mg# [=100xMg/(Mg+Fe(total)) atomic ratio] of pyroxenes (70-77) and textural features (e.g., poikilitic) indicate that the gabbroic xenoliths are consistent with a cumulus origin. The clinopyroxenes from these xenoliths are enriched in REE with smooth convex-upward MREE patterns, which are expected for cumulus minerals formed from a melt enriched in incompatible trace elements. The strikingly similar major and trace element variations and the patterns of constituent minerals clearly indicate a genetic link between the gabbroic xenoliths (plus megacrysts) and the host basalt, indicating that the xenoliths belong to the Jeju Pleisto-Holocene magma system. On the basis of the textural features, the mineral equilibria and the major and trace element variations, the xenoliths appear to have crystallized from basaltic melts at the reservoir-roof environment within the lower crust (4-7 kbars) above the present Moho estimates beneath Jeju Island, where the xenoliths represent wall rocks. Following the consolidation of the xenolith lithologies, volatile- and incompatible element-enriched melt/fluid, as metasomatic agents, infiltrated through the grain boundaries and/or cracks and reacted with the preexisting anhydrous phases, which produced the metasomatic amphiboles. This volatile-enriched melt/fluid could have evolved from the initially anhydrous compositions to the volatile-saturated compositions by the active fractional crystallization in the Jeju Pleisto-Holocene magma system. This process was significant in that it was a relatively young event and played an important role in the formation of the hydrous minerals and the metasomatization of the lower continental crust, which is a plume-impacted area along the Asian continental margin. The major and trace element analyses of the mineral phases from the xenoliths were performed to define the principal geochemical characteristics of the crustal lithosphere segment represented by the studied xenoliths.
Resumo:
In recent years, metalliferous sediments have been discovered overlying newly generated oceanic crust in the East Pacific, North Atlantic, Indian Ocean, Red Sea, Gulf of Aden, and elsewhere (e.g., Boström, 1973; Lalou et al., 1977; Bischoff, 1969; Boström and Fisher, 1971; Cann et al., 1977, respectively). Such material has also been recovered by drilling from sediments lying upon older oceanic crust (Boström et al., 1972, 1976; Horowitz and Cronan, 1976). Hydrothermal circulation of seawater at a spreading ridge results in the leaching of Fe, Mn, and possibly other elements from the basaltic volcanic layer and their transport and discharge into ocean bottom waters, whereupon fine-grained Fe-Mn-rich precipitates form and settle into the ambient sediment (cf. Corliss, 1971; Dasch et al., 1971; Spooner and Fyfe, 1973; Bischoff and Dickson, 1975; Heath and Dymond, 1977; Corliss et al., 1979, Edmond et al., 1979). Mn-rich crusts have also been recovered from active ridges and are inferred to have formed in the vicinity of hydrothermal discharge areas (Scott et al., 1974; Moore and Vogt, 1976; Corliss et al., 1978; Hoffert et al., 1978). The source of the trace elements in the metalliferous deposits is generally not clear. They may be derived from seawater by adsorption onto the precipitates or crusts, or from hydrothermal solutions which have leached them from the basalts. Pb, however, can be used as a geochemical tracer because of the known isotopic compositional differences between oceanic basalts and seawater. Isotopic investigations of Pb in ferruginous sediments from the East Pacific have shown that it has been derived partly or mostly from a basaltic source (Bender et al., 1971; Dasch et al., 1971; Dymond et al., 1973). In the present study, Pb isotopic analyses have been made of a suite of metalliferous sediments (nontronite, Mn-oxide crust, Mn-Fe-oxide mud), pelagic sediments, and basalts from the Galapagos mounds area. The main purposes of the Pb study were to determine the source or sources of Pb in the metalliferous sediments, and whether or not stratigraphic variations exist in the isòtopic composition of Pb in the sediments.