958 resultados para Trabalhos de projeto de mestrado - 2013


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta um levantamento dos problemas associados à influência da observabilidade e da visualização radial no projeto de sistemas de monitoramento para redes de grande magnitude e complexidade. Além disso, se propõe a apresentar soluções para parte desses problemas. Através da utilização da Teoria de Redes Complexas, são abordadas duas questões: (i) a localização e a quantidade de nós necessários para garantir uma aquisição de dados capaz de representar o estado da rede de forma efetiva e (ii) a elaboração de um modelo de visualização das informações da rede capaz de ampliar a capacidade de inferência e de entendimento de suas propriedades. A tese estabelece limites teóricos a estas questões e apresenta um estudo sobre a complexidade do monitoramento eficaz, eficiente e escalável de redes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to develop a pilot plant which the main goal is to emulate a flow peak pressure in a separation vessel. Effect similar that is caused by the production in a slug flow in production wells equipped with the artificial lift method plunger lift. The motivation for its development was the need to test in a plant on a smaller scale, a new technique developed to estimate the gas flow in production wells equipped with plunger lift. To develop it, studies about multiphase flow effects, operation methods of artificial lift in plunger lift wells, industrial instrumentation elements, control valves, vessel sizing separators and measurement systems were done. The methodology used was the definition of process flowcharts, its parameters and how the effects needed would be generated for the success of the experiments. Therefore, control valves, the design and construction of vessels and the acquisition of other equipment used were defined. One of the vessels works as a tank of compressed air that is connected to the separation vessel and generates pulses of gas controlled by a on/off valve. With the emulator system ready, several control experiments were made, being the control of peak flow pressure generation and the flow meter the main experiments, this way, it was confirmed the efficiency of the plant usage in the problem that motivated it. It was concluded that the system is capable of generate effects of flow with peak pressure in a primary separation vessel. Studies such as the estimation of gas flow at the exit of the vessel and several academic studies can be done and tested on a smaller scale and then applied in real plants, avoiding waste of time and money.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of synchronous generators connected to power grid has been the object of study and research for years. The interest in this matter is justified by the fact that much of the electricity produced worldwide is obtained with the use of synchronous generators. In this respect, studies have been proposed using conventional and unconventional control techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the stabilitymargin of the systemduring sudden failures and transient disturbances. Thismaster thesis presents a robust unconventional control strategy for maintaining the stability of power systems and regulation of output voltage of synchronous generators connected to the grid. The proposed control strategy comprises the integration of a sliding surface with a linear controller. This control structure is designed to prevent the power system losing synchronism after a sudden failure and regulation of the terminal voltage of the generator after the fault. The feasibility of the proposed control strategy was experimentally tested in a salient pole synchronous generator of 5 kVA in a laboratory structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the dissertation was the realization of kinematic modeling of a robotic wheelchair using virtual chains, allowing the wheelchair modeling as a set of robotic manipulator arms forming a cooperative parallel kinematic chain. This document presents the development of a robotic wheelchair to transport people with special needs who overcomes obstacles like a street curb and barriers to accessibility in streets and avenues, including the study of assistive technology, parallel architecture, kinematics modeling, construction and assembly of the prototype robot with the completion of a checklist of problems and barriers to accessibility in several pathways, based on rules, ordinances and existing laws. As a result, simulations were performed on the chair in various states of operation to accomplish the task of going up and down stair with different measures, making the proportional control based on kinematics. To verify the simulated results we developed a prototype robotic wheelchair. This project was developed to provide a better quality of life for people with disabilities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at the design, development and performance evaluation of a flat platform to capture incident solar radiation. The design and implementation of a fuzzy system for the efficient control of the solar tracking movement of the platform are also presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an online configurable multiplatform development environment specifically developed for educational robotics applications. The environment, which appears as an extension of RoboEduc software, allows the programming of several programmable robots to be performed using the R-Educ language. We make it possible for the user to program in the language R-Educ and then translate the code to a language previously registered, compiled and then sent or executed by the robot. To develop this work, we conducted a bibliographic research about the main programming languages used in robotics, as well as their definitions and paradigms, from which it was possible to define a set of patterns considered important for the creation of this environment. Then, in the software development phase, we implemented the development environment, bearing in mind the requirements and functionality defined in the design phase. Finally, to validate the platform, we conducted some trials of programming languages and verificate if the complete cycle was satisfied - registration of language, programming in R-Educ, compilation for the registered language, compilation to the machine code and send the code for the robot

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este projeto propõe desenvolver e implementar um controlador para o sistema de refrigeração da tocha indutiva a plasma térmico. Este processo é feito a partir da medição da temperatura através de um sensor do sistema de refrigeração. O sinal produzido será enviado para uma entrada analógica do microcontrolador da família PIC, que utilizando os conceitos de lógica fuzzy, controla a velocidade de um motor bomba. Este é responsável por diminuir ou aumentar o fluxo circulante de água que passa pela bobina, pelo corpo da tocha e pelo flange de fixação, deixando-os na temperatura desejada. A velocidade desta bomba será controlada por um inversor de frequência. O microcontrolador, também, acionará um ventilador caso exceda a temperatura de referência. A proposta inicial foi o desenvolvimento do controle da temperatura da bobina de uma tocha indutiva a plasma, mas com algumas adequações, foi possível também aplicar no corpo da tocha. Essa tocha será utilizada em uma planta de tratamento de resíduos industriais e efluentes petroquímicos. O controle proposto visa garantir as condições físicas necessárias para tocha de plasma, mantendo a temperatura da água em um determinado nível que permita o resfriamento sem comprometer, no entanto, o rendimento do sistema. No projeto será utilizada uma tocha de plasma com acoplamento indutivo (ICPT), por ter a vantagem de não possuir eletrodos metálicos internos sendo erodidos pelo jato de plasma, evitando uma possível contaminação, e também devido à possibilidade do reaproveitamento energético através da cogeração de energia. O desenvolvimento da tecnologia a plasma na indústria de tratamento de resíduos vem obtendo bons resultados. Aplicações com essa tecnologia têm se tornado cada vez mais importantes por reduzir, em muitos casos, a produção de resíduos e o consumo de energia em vários processos industriais

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency selective surfaces (Frequency Selective Surface - FSS) are often used in various applications in telecommunications. Some of these applications may require that these structures have response with multiple resonance bands. Other applications require that the FSS response have large frequency range, to meet the necessary requirements. FSS to design with these features there are numerous techniques cited in the scientific literature. Thus, the purpose of this paper is to examine some common techniques such as: Overlap of FSS; Elements combined; Elements Elements convolucionados and fractals. And designing multiband FSS and / or broadband selecting simple ways in terms of construction and occupy the smallest possible space, aiming at practical applications. Given these requirements, three projects FSS were performed: a technology applied to IEEE 802.11 a/b/g/n and two projects for application in UWB. In project development, commercial software Ansoft DesignerTM and experimental results were satisfactory was used