950 resultados para Three-Dimensional Imaging


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

22q11.2 deletion syndrome (22q11.2DS) is a common genetic condition associated with cognitive and learning impairments. In this study, we applied a three-dimensional method for quantifying gyrification at thousands of points over the cortical surface to imaging data from 44 children, adolescents, and young adults with 22q11.2DS (17 males, 27 females; mean age 17y 2mo [SD 9y 1mo], range 6-37y), and 53 healthy participants (21 males, 32 females; mean age 15y 4mo [SD 8y 6mo]; range 6-40y). Several clusters of reduced gyrification were observed, further substantiating the pattern of cerebral alterations presented by children with the syndrome. Comparisons within 22q11.2DS demonstrated an effect of congenital heart disease (CHD) on cortical gyrification, with reduced gyrification at the parieto-temporo-occipital junction in patients with CHD, as compared with patients without CHD. Reductions in gyrification can resemble mild polymicrogyria, suggesting early abnormal neuronal proliferation or migration and providing support for an effect of hemodynamic factors on brain development in 22q11.2DS. The results also shed light on the pathophysiology of acquired brain injury in other populations with CHD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: An accurate, noninvasive technique for the diagnosis of coronary disease would be an important advance. We investigated the accuracy of coronary magnetic resonance angiography among patients with suspected coronary disease in a prospective, multicenter study. METHODS: Coronary magnetic resonance angiography was performed during free breathing in 109 patients before elective x-ray coronary angiography, and the results of the two diagnostic procedures were compared. RESULTS: A total of 636 of 759 proximal and middle segments of coronary arteries (84 percent) were interpretable on magnetic resonance angiography. In these segments, 78 (83 percent) of 94 clinically significant lesions (those with a > or = 50 percent reduction in diameter on x-ray angiography) were also detected by magnetic resonance angiography. Overall, coronary magnetic resonance angiography had an accuracy of 72 percent (95 percent confidence interval, 63 to 81 percent) in diagnosing coronary artery disease. The sensitivity, specificity, and accuracy for patients with disease of the left main coronary artery or three-vessel disease were 100 percent (95 percent confidence interval, 97 to 100 percent), 85 percent (95 percent confidence interval, 78 to 92 percent), and 87 percent (95 percent confidence interval, 81 to 93 percent), respectively. The negative predictive values for any coronary artery disease and for left main artery or three-vessel disease were 81 percent (95 percent confidence interval, 73 to 89 percent) and 100 percent (95 percent confidence interval, 97 to 100 percent), respectively. CONCLUSIONS: Among patients referred for their first x-ray coronary angiogram, three-dimensional coronary magnetic resonance angiography allows for the accurate detection of coronary artery disease of the proximal and middle segments. This noninvasive approach reliably identifies (or rules out) left main coronary artery or three-vessel disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To objectively compare quantitative parameters related to image quality attained at coronary magnetic resonance (MR) angiography of the right coronary artery (RCA) performed at 7 T and 3 T. MATERIALS AND METHODS: Institutional review board approval was obtained, and volunteers provided signed informed consent. Ten healthy adult volunteers (mean age ± standard deviation, 25 years ± 4; seven men, three women) underwent navigator-gated three-dimensional MR angiography of the RCA at 7 T and 3 T. For 7 T, a custom-built quadrature radiofrequency transmit-receive surface coil was used. At 3 T, a commercial body radiofrequency transmit coil and a cardiac coil array for signal reception were used. Segmented k-space gradient-echo imaging with spectrally selective adiabatic fat suppression was performed, and imaging parameters were similar at both field strengths. Contrast-to-noise ratio between blood and epicardial fat; signal-to-noise ratio of the blood pool; RCA vessel sharpness, diameter, and length; and navigator efficiency were quantified at both field strengths and compared by using a Mann-Whitney U test. RESULTS: The contrast-to-noise ratio between blood and epicardial fat was significantly improved at 7 T when compared with that at 3 T (87 ± 34 versus 52 ± 13; P = .01). Signal-to-noise ratio of the blood pool was increased at 7 T (109 ± 47 versus 67 ± 19; P = .02). Vessel sharpness obtained at 7 T was also higher (58% ± 9 versus 50% ± 5; P = .04). At the same time, RCA vessel diameter and length and navigator efficiency showed no significant field strength-dependent difference. CONCLUSION: In our quantitative and qualitative study comparing in vivo human imaging of the RCA at 7 T and 3 T in young healthy volunteers, parameters related to image quality attained at 7 T equal or surpass those from 3 T.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To demonstrate the validity and reliability of volumetric quantitative computed tomography (vQCT) with multi-slice computed tomography (MSCT) and dual energy X-ray absorptiometry (DXA) for hip bone mineral density (BMD) measurements, and to compare the differences between the two techniques in discriminating postmenopausal women with osteoporosis-related vertebral fractures from those without. METHODS: Ninety subjects were enrolled and divided into three groups based on the BMD values of the lumbar spine and/or the femoral neck by DXA. Groups 1 and 2 consisted of postmenopausal women with BMD changes <-2SD, with and without radiographically confirmed vertebral fracture (n=11 and 33, respectively). Group 3 comprised normal controls with BMD changes > or =-1SD (n=46). Post-MSCT (GE, LightSpeed16) scan reconstructed images of the abdominal-pelvic region, 1.25 mm thick per slice, were processed by OsteoCAD software to calculate the following parameters: volumetric BMD values of trabecular bone (TRAB), cortical bone (CORT), and integral bone (INTGL) of the left femoral neck, femoral neck axis length (NAL), and minimum cross-section area (mCSA). DXA BMD measurements of the lumbar spine (AP-SPINE) and the left femoral neck (NECK) also were performed for each subject. RESULTS: The values of all seven parameters were significantly lower in subjects of Groups 1 and 2 than in normal postmenopausal women (P<0.05, respectively). Comparing Groups 1 and 2, 3D-TRAB and 3D-INTGL were significantly lower in postmenopausal women with vertebral fracture(s) [(109.8+/-9.61) and (243.3+/-33.0) mg/cm3, respectively] than in those without [(148.9+/-7.47) and (285.4+/-17.8) mg/cm(3), respectively] (P<0.05, respectively), but no significant differences were evident in AP-SPINE or NECK BMD. CONCLUSION: the femoral neck-derived volumetric BMD parameters using vQCT appeared better than the DXA-derived ones in discriminating osteoporotic postmenopausal women with vertebral fractures from those without. vQCT might be useful to evaluate the effect of osteoporotic vertebral fracture status on changes in bone mass in the femoral neck.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to compare the diagnostic efficiency of plain film and spiral CT examinations with 3D reconstructions of 42 tibial plateau fractures and to assess the accuracy of these two techniques in the pre-operative surgical plan in 22 cases. Forty-two tibial plateau fractures were examined with plain film (anteroposterior, lateral, two obliques) and spiral CT with surface-shaded-display 3D reconstructions. The Swiss AO-ASIF classification system of bone fracture from Muller was used. In 22 cases the surgical plans and the sequence of reconstruction of the fragments were prospectively determined with both techniques, successively, and then correlated with the surgical reports and post-operative plain film. The fractures were underestimated with plain film in 18 of 42 cases (43%). Due to the spiral CT 3D reconstructions, and precise pre-operative information, the surgical plans based on plain film were modified and adjusted in 13 cases among 22 (59%). Spiral CT 3D reconstructions give a better and more accurate demonstration of the tibial plateau fracture and allows a more precise pre-operative surgical plan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computed tomography (CT) is used increasingly to measure liver volume in patients undergoing evaluation for transplantation or resection. This study is designed to determine a formula predicting total liver volume (TLV) based on body surface area (BSA) or body weight in Western adults. TLV was measured in 292 patients from four Western centers. Liver volumes were calculated from helical computed tomographic scans obtained for conditions unrelated to the hepatobiliary system. BSA was calculated based on height and weight. Each center used a different established method of three-dimensional volume reconstruction. Using regression analysis, measurements were compared, and formulas correlating BSA or body weight to TLV were established. A linear regression formula to estimate TLV based on BSA was obtained: TLV = -794.41 + 1,267.28 x BSA (square meters; r(2) = 0.46; P &lt;.0001). A formula based on patient weight also was derived: TLV = 191.80 + 18.51 x weight (kilograms; r(2) = 0.49; P &lt;.0001). The newly derived TLV formula based on BSA was compared with previously reported formulas. The application of a formula obtained from healthy Japanese individuals underestimated TLV. Two formulas derived from autopsy data for Western populations were similar to the newly derived BSA formula, with a slight overestimation of TLV. In conclusion, hepatic three-dimensional volume reconstruction based on helical CT predicts TLV based on BSA or body weight. The new formulas derived from this correlation should contribute to the estimation of TLV before liver transplantation or major hepatic resection.