881 resultados para Task Assignment
Resumo:
Risk and transaction costs often provide competing explanations of institutional outcomes. In this paper we argue that they offer opposing predictions regarding the assignment of fixed and variable taxes in a multi-tiered governmental structure. While the central government can pool regional risks from variable taxes, local governments can measure variable tax bases more accurately. Evidence on tax assignment from the mid-sixteenth century Ottoman Empire supports the transaction cost explanation, suggesting that risk matters less because insurance can be obtained in a variety of ways.
Resumo:
Empresas como HEXA S.A. desean introducir SIG como elemento para incrementar el valor agregado de los proyectos de consultoría que realizan. Tal es el caso del trabajo encomendado por ellos al CIFOT titulado Esquema hidromorfológico de la cuenca del río Tunuyán Superior y clasificación de Usos del Suelo del Oasis Centro Oeste; Provincia de Mendoza. Se unifica en un único modelo digital una serie de cartas topográficas (IGM) digitalizan diversos niveles de información (curvas de nivel, hidrografía de la cuenca del río Tunuyán), red de caminos y su jerarquía. A partir de la base de datos lograda, se generan mapas temáticos de cada cuenca, apoyados con imágenes satelitales Landsat TM, que permiten identificar cobertura nivo- glacial y usos del suelo en el Oasis. Con esta información la empresa obtiene un modelo de simulación del Río Tunuyán para predecir el caudal que conduciría el río ante determinadas nevadas, por ejemplo. Se propone además un modelo de SIG para el monitoreo de la zona.
Resumo:
Feather pecking is a behaviour by which birds damage or destroy the feathers of themselves (self-pecking) or other birds (allo feather pecking), in some cases even plucking out feathers and eating these. The self-pecking is rarely seen in domestic laying hens but is not uncommon in parrots. Feather pecking in laying hens has been described as being stereotypic, i.e. a repetitive invariant motor pattern without an obvious function, and indeed the amount of self-pecking in parrots was found to correlate positively with the amount of recurrent perseveration (RP), the tendency to repeat responses inappropriately, which in humans and other animals was found to correlate with stereotypic behaviour. In the present experiment we set out to investigate the correlation between allo feather pecking and RP in laying hens. We used birds (N = 92) from the 10th and 11th generation (G10 and G11) of lines selectively bred for high feather pecking (HFP) and low feather pecking (LFP), and from an unselected control line (CON) with intermediate levels of feather pecking. We hypothesised that levels of RP would be higher, and the time taken (standardised latency) to repeat a response lower, in HFP compared to LFP hens, with CON hens in between. Using a two-choice guessing task, we found that lines differed significantly in their levels of RP, with HFP unexpectedly showing lower levels of RP than CON and LFP. Latency to make a repeat did not differ between lines. Latency to make a switch differed between lines with a shorter latency in HFP compared to LFP (in G10), or CON (in G11). Latency to peck for repeats vs. latency to peck for switches did not differ between lines. Total time to complete the test was significantly shorter in HFP compared to CON and LFP. Thus, our hypotheses were not supported by the data. In contrast, selection for feather pecking seems to induce the opposite effects than would be expected from stereotyping animals: pecking was less sequenced and reaction to make a switch and to complete the test was lower in HFP. This supports the hyperactivity-model of feather pecking, suggesting that feather pecking is related to a higher general activity, possibly due to changes in the dopaminergic system.
Resumo:
The complexity in the execution of cooperative tasks is high due to the fact that a robot team requires movement coordination at the beginning of the mission and continuous coordination during the execution of the task. A variety of techniques have been proposed to give a solution to this problem assuming standard mobile robots. This work focuses on presenting the execution of a cooperative task by a modular robot team. The complexity of the task execution increases due to the fact that each robot is composed of modules which have to be coordinated in a proper way to successfully work. A combined tight and loose cooperation strategy is presented and a bar-pushing example is used as a cooperative task to show the performance of this type of system.
Resumo:
Multicarrier transmission such as OFDM (orthogonal frequency division multiplexing) is an established technique for radio transmission systems and it can be considered as a promising approach for next generation wireless systems. However, in order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users' scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user's channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system.
Resumo:
Multiuser multiple-input multiple-output (MIMO) downlink (DL) transmission schemes experience both multiuser interference as well as inter-antenna interference. The singular value decomposition provides an appropriate mean to process channel information and allows us to take the individual user’s channel characteristics into account rather than treating all users channels jointly as in zero-forcing (ZF) multiuser transmission techniques. However, uncorrelated MIMO channels has attracted a lot of attention and reached a state of maturity. By contrast, the performance analysis in the presence of antenna fading correlation, which decreases the channel capacity, requires substantial further research. The joint optimization of the number of activated MIMO layers and the number of bits per symbol along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers has to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput