958 resultados para Superconducting transition temperature
Resumo:
Seit der Entwicklung einer großen Vielfalt von Anwendungsmöglichkeiten der Spintronik auf Basis von Heusler Verbindungen innerhalb der letzten Dekade kann der Forschungsfortschritt an dieser Material Klasse in einer Vielzahl von Publikationen verfolgt werden. Eine typische Heusler Verbindung X2YZ besteht aus zwei Übergangsmetallen (X, Y) und einem Hauptgruppenelement (Z). Diese Arbeit berichtet von Heusler Verbindungen mit besonderem Augenmerk auf deren potentielle halbmetallische Eigenschaften und davon insbesondere solche, die eine richtungsabhängige magnetische Anisotropie (perpendicular magnetic anisotropy- PMA) zeigen könnten. PMA ist insbesondere für Spin transfer Torque (STT) Bauelemente von großem Interesse und tritt in tetragonalrnverzerrten Heusler Verbindungen auf. Bei STT-Elementen werden mittels spinpolarisierter Ströme die magnetische Orientierung von magnetischen Schichten beeinflusst.rnDie signifikantesten Ergebnisse dieser Arbeit sind: die Synthese neuer kubischen Heusler Phasen Fe2YZ, die theoretisch als tetragonal vorausgesagt wurden (Kapitel 1), die Synthese von Mn2FeGa, das in der tetragonal verzerrten Struktur kristallisiert und Potential für STT Anwendungen zeigt (Kapitel 2); die Synthese von Fe2MnGa, das einen magnetischen Phasenübergang mit exchange-bias (EB) Effekt zeigt, der auf einer Koexistenz von ferromagnetischen (FM) und antiferromagnetischen (AFM) Phasen beruht (Kapitel 3); Schlussendlich wird in Kapitel 4 die Synthese von Mn3−xRhxSn diskutiert, in welcher insbesondere tetragonales Mn2RhSn als potentielles Material für Anwendungen in derrnSpintronik vorgestellt wird.rnIn dieser Arbeit wurden hauptsächlich Heusler Verbindungen mit mößbaueraktiven Elementen 57Fe und 119Sn, synthetisiert und untersucht. Im Falle der hier untersuchten Heusler Verbindungen spielt die Charakterisierung durch Mößbauer Spektroskopie eine entscheidende Rolle, da Heusler Verbindungen meistens ein gewisses Maß an Fehlordnung aufweisen, welche deren magnetischen und strukturellen Eigenschaften beeinflussen kann. Die Art der Fehlordnung jedoch kann nur schwer durch standard Pulver-Röntgendiffraktion bestimmt werden, weshalb wir die Vorteile der Mößbauer Spektroskopie als lokale Methode nutzen, um den Typ und den Grad der Fehlordnung aufzuklären. rnDiese Arbeit ist wie folgt gegliedert:rnIn Kapitel 1 wurden die neuen, kubisch-weichferromagnetischen Heuslerphasen Fe2NiGe, Fe2CuGa und Fe2CuAl synthetisiert und charakterisiert. In vorangegangenen theoretischen Studien wurde für deren Existenz in tetragonaler Heuslerstruktur vorhergesagt.rnUngeachtet dessen belegten unsere experimentellen Untersuchungen, dass diese Verbindungen hauptsächlich in der kubischen invers Heusler(X-) struktur mit unterschiedlichen Anteilen an atomarer Fehlordnung kristallisieren. Alle Verbindungen sind weiche Ferromagneten mit hoher Curietemperatur bis zu 900K, weswegen alle als potentielle Materialien für magnetische Anwendungen geeignet sind. In Kapitel 2 wurde Mn2FeGa synthetisiert. Es zeigte sich, dass Mn2FeGa nach Temperatur Nachbehandlung bei 400°C die invers tetragonale Struktur (I4m2) annimmt. Theoretisch wurde die Existenz in der inversen kubischen Heuslerstruktur vorausgesagt. Abhängig von den Synthesebedingungen ändern sich die magnetischen und strukturellen Eigenschaften von Mn2FeGa eklatant. Deshalb ändert sich die Kristallstruktur von M2FeGa bei Temperung bei 800 °C zu einer pseudokubischen Cu3Au-artigen Struktur, in welcher Fe- und Mn-Atome statistisch verteilt vorliegen. Dieser Übergang der Kristallstrukturen wurde durch Mößbauer Spektroskopie anhand des Vorliegens oder Fehlens der Quadrupolaufspaltung im Falle der invers tetragonalen bzw. pseudokubischen Modifikation nachgewiesen. In Kapitel 3 wurde Fe2MnGa ebenfalls erfolgreich synthetisiert und durch verschiedene Methoden charakterisiert. Der Zusammenhang von Kristallstruktur und magnetischen Eigenschaften wurde durch verschiedene Temperungskonditionen und mechanischer Behandlung untersucht. Der Schwerpunkt lag auf einer geschmolzenen Probe ohne weitere Temperung, die einen FM-AFM Phasenübergang zeigte. Diese magnetische Phasenumwandlung führt zu einem starken EB-Verhalten, welches seinen Ursprung hauptsächlich in der Koexistenz von FM- und AFM-Phasen unterhalb der FMAFM- Übergangstemperatur hat. Kapitel 4 ist den neuen Mn-basierten Heusler-Verbindungen Mn3−xRhxSn gewidmet, bei denen wir versuchten, durch den Austausch von Mn durch das größere Rh eine Umwandlung zu einer tetragonalen Struktur von den hexagonalen Mn3Sn-Struktur zu erreichen. Als interessant stellten sich Mn2RhSn und Mn2.1Rh0.9Sn heraus, da sie aus nur einer Phase vorzuliegen scheinen, wohingegen die anderen Verbindungen aus gemischten Phasen mit gleichzeitiger starken Fehlordnung bestehen. Im abschließenden Anhang wurden die Fehlordnung und gelegentliche Mischphasen einer großen Auswahl von Mn3−xFexGa Materialien mit 1≤x≤3, dokumentiert.rn
Resumo:
The synthesis, characterization and application of aqueous dispersions of superparamagnetic/polymer hybrid nanoparticles and capsules is described. Implementation of the superparamagnetic moiety into the polymer matrix enables a response of the nanomaterials towards an external magnetic field. Application of the external field is used for two main purposes: i) As heat generator, when an alternating magnetic field is applied. ii) As structuring agent to self-assemble superparamagnetic nanoparticles in the external field.rnIn the first part, superparamagnetic nanoparticles were used as heat generators in order to achieve a magnetic field induced release of an active compound from nanocontainers. To achieve such a release in remote-controlled fashion, the encapsulation of superparamagnetic nanoparticles into polymer nanocapsules was combined with the integration of a thermolabile compound into the shell of the nanocontainers. The magnetic nanoparticles acted as generators for heat, which decomposed the thermolabile compound. Pores were created in the degrading shell and an active substance was released.rn Additionally, the self-assembly of polymer nanoparticles, which were labeled with a superparamagnetic moiety as structuring agent, could be demonstrated. A combination of a magnetic field induced self-assembly and a sintering of neighboring particles upon an increase in temperature above the glass transition temperature of the polymer was used to form stable architectures. Various structures with tunable periodicity could be obtained ranging from smooth linear nanofibers to zigzag fibers. Besides solely creating linear architectures, the frugal process additionally allowed the creation of arrangements in analogy to more complex polymer architectures: By the introduction of defined junction points, the generation of branched structures and networks was demonstrated. Additionally, by tailoring the interaction of differently sized particles, the preparation of nanoparticle arrangements in statistical or block copolymer fashion was shown. Moreover, a reversible linear assembly and linkage of the nanoparticles was demonstrated following a lock/unlock mechanism. Therefore, the particles were locked in their linear assembly by a stable iron(III) hydroxamato-complex and unlocked by addition of a reducing agent and formation of a less stable iron(II)-complex.Further, in various projects with collaboration partners, nanoparticles and nanocapsules were labeled with a superparamagnetic moiety for their use as contrast agents in magnetic resonance imaging or as magnetically separable dispersions.
Resumo:
Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in derrnfreien Energie überwinden um einen Tropfen der stabilen Phase zu formen.rnHerkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. Inrnanisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-rnbracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems starkrnauf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb derrnAufrauungstemperatur T R schwächer. Das Ising-Modell ist ein einfaches Mo-rndell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-rnulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-rnhergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. DasrnAusmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-rnduzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogrammsrnfür das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.rnGrafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-rnstrakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-rndetails verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-rnfläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-rnfläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durchrnein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-rnchung ab, welche das Verhalten der freien Energie der Oberfläche in einemrnanisotropen System beschreibt. Kombiniert mit thermodynamischer Integrationrnkann die Gleichung benutzt werden, um die anisotrope Oberflächenspannungrnüber einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-rnsungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-rnstimung und Genauigkeit, welche vor allem durch die im Vergleich zu früherenrnMessungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-rnaturabhängigkeit der Oberflächensteifheit κ wird oberhalb von T R durch diernKrümmung der freien Energie der Oberfläche für kleine Winkel gemessen. DiesernMessung lässt sich mit Simulationsergebnissen in der Literatur vergleichen undrnhat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-rnverhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell fürrndas Verhalten um Θ = 90 Grad weit unterhalb von T R. Der Winkel bleibt bis zu einemrnkritischen Feld H C quasi null; oberhalb des kritischen Feldes steigt der Winkelrnrapide an. H C wird mit der freien Energie einer Stufe in Verbindung gebracht,rnwas es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harternWand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-rnergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag derrnKontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-rnyse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wirdrneine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.rnbenutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-rnplementieren einen parallelen Evolution Galerkin Operator und erreichen
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene
Resumo:
EPON 862 is an epoxy resin which is cured with the hardening agent DETDA to form a crosslinked epoxy polymer and is used as a component in modern aircraft structures. These crosslinked polymers are often exposed to prolonged periods of temperatures below glass transition range which cause physical aging to occur. Because physical aging can compromise the performance of epoxies and their composites and because experimental techniques cannot provide all of the necessary physical insight that is needed to fully understand physical aging, efficient computational approaches to predict the effects of physical aging on thermo-mechanical properties are needed. In this study, Molecular Dynamics and Molecular Minimization simulations are being used to establish well-equilibrated, validated molecular models of the EPON 862-DETDA epoxy system with a range of crosslink densities using a united-atom force field. These simulations are subsequently used to predict the glass transition temperature, thermal expansion coefficients, and elastic properties of each of the crosslinked systems for validation of the modeling techniques. The results indicate that glass transition temperature and elastic properties increase with increasing levels of crosslink density and the thermal expansion coefficient decreases with crosslink density, both above and below the glass transition temperature. The results also indicate that there may be an upper limit to crosslink density that can be realistically achieved in epoxy systems. After evaluation of the thermo-mechanical properties, a method is developed to efficiently establish molecular models of epoxy resins that represent the corresponding real molecular structure at specific aging times. Although this approach does not model the physical aging process, it is useful in establishing a molecular model that resembles the physically-aged state for further use in predicting thermo-mechanical properties as a function of aging time. An equation has been predicted based on the results which directly correlate aging time to aged volume of the molecular model. This equation can be helpful for modelers who want to study properties of epoxy resins at different levels of aging but have little information about volume shrinkage occurring during physical aging.
Resumo:
Experimental studies on epoxies report that the microstructure consists of highly crosslinked localized regions connected with a dispersed phase of low crosslink density. The various thermo-mechanical properties of epoxies might be affected by the crosslink distribution. But as experiments cannot report the exact number of crosslinked covalent bonds present in the structure, molecular dynamics is thus being used in this work to determine the influence of crosslink distribution on thermo-mechanical properties. Molecular dynamics and molecular mechanics simulations are used to establish wellequilibrated molecular models of EPON 862-DETDA epoxy system with a range of crosslink densities and various crosslink distributions. Crosslink distributions are being varied by forming differently crosslinked localized clusters and then by forming different number of crosslinks interconnecting the clusters. Simulations are subsequently used to predict the volume shrinkage, thermal expansion coefficients, and elastic properties of each of the crosslinked systems. The results indicate that elastic properties increase with increasing levels of overall crosslink density and the thermal expansion coefficient decreases with overall crosslink density, both above and below the glass transition temperature. Elastic moduli and coefficients of linear thermal expansion values were found to be different for systems with same overall crosslink density but having different crosslink distributions, thus indicating an effect of the epoxy nanostructure on physical properties. The values of thermo-mechanical properties for all the crosslinked systems are within the range of values reported in literature.
Resumo:
The effects of Si and cooling rate are investigated for their effect on the mechanical properties and microstructure. Three alloys were chosen with varying C and Si contents and an attempt to keep the remainder of the elements present constant. Within each heat, three test blocks were poured. Two blocks had chills – one with a fluid flowing through it to cool it (active chill) and one without the fluid (passive) – and the third block did not have a chill. Cooling curves were gathered and analyzed. The mechanical properties of the castings were correlated to the microstructure, cooling rate and Si content of each block. It was found that an increase in Si content increased the yield stress, tensile strength and hardness but decreased the impact toughness, elongation and Young’s modulus. The fast cooling rates produced by the chills caused a high nodule count in the castings along with a fine ferrite grain size and a high degree of nodularity. The fine microstructures, in turn, increased the strength and ductile to brittle transition temperature (DBTT) of the castings. The fast cooling rate was not adequate to overcome the dramatic increase in DBTT that is caused by the addition of Si.
Resumo:
The freezing behavior of water confined in compacted charged and uncharged clays (montmorillonite in Na-and Ca-forms, illite in Na-and Ca-forms, kaolinite and pyrophyllite) was investigated by neutron scattering. Firstly, the amount of frozen (immobile) water was measured as a function of temperature at the IN16 backscattering spectrometer, Institute Laue-Langevin (ILL). Water in uncharged, partly hydrophobic (kaolinite) and fully hydrophobic (pyrophyllite) clays exhibited a similar freezing and melting behavior to that of bulk water. In contrast, water in charged clays which are hydrophilic could be significantly supercooled. To observe the water dynamics in these clays, further experiments were performed using quasielastic neutron scattering. At temperatures of 250, 260 and 270 K the diffusive motion of water could still be observed, but with a strong reduction in the water mobility as compared with the values obtained above 273 K. The diffusion coefficients followed a non-Arrhenius temperature dependence well described by the Vogel-Fulcher-Tammann and the fractional power relations. The fits revealed that Na-and Ca-montmorillonite and Ca-illite have similar Vogel-Fulcher-Tammann temperatures (T-VFT, often referred to as the glass transition temperature) of similar to 120 K and similar temperatures at which the water undergoes the 'strong-fragile' transition, T-s similar to 210 K. On the other hand, Na-illite had significantly larger values of T-VFT similar to 180 K and T-s similar to 240 K. Surprisingly, Ca-illite has a similar freezing behavior of water to that of montmorillonites, even though it has a rather different structure. We attribute this to the stronger hydration of Ca ions as compared with the Na ions occurring in the illite clays.
Resumo:
The behavior of bottomonium state correlators at non-zero temperature, 140.4(β = 6.664) ≤ T ≤ 221(β = 7.280) (MeV), where the transition temperature is 154(9) (MeV), is studied, using lattice NRQCD on 48³ ×12 HotQCD HiSQ action configurations with light dynamical Nf = 2+1 (mu,s/ms = 0.05) staggered quarks. In order to understand finite temperature effects on quarkonium states, zero temperature behavior of bottomonium correlators is compared based on 32⁴ (β = 6.664,6.800 and 6.950) and 48³ ×64 (β = 7.280) lattices. We find that temperature effects on S-wave bottomoniumstates are small but P-wave bottomoniumstates show a noticeable temperature dependence above the transition temperature.
Resumo:
Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO3)2, Al(NO3)3 and Pb(NO3)2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca < Al < Pb, while the cation content of precipitates increased in the order Pb < Ca < Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C > 3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53–65 °C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca < Pb < Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca < Pb < Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils.
Resumo:
On the basis of studies of Holocene samples,submarine basaltic glass (SBG) is thought to be an ideal paleointensity recorder because it contains unaltered single domain magnetic inclusions that yield Thellier paleointensity data of exceptional quality. To be useful as a recorder of the long-term geomagnetic field, older SBG must retain these optimal properties. Here, we examine this issue through rock magnetic and transmission electron microscope (TEM) analyses of Cretaceous SBG recovered at Ocean Drilling Program Site 1203 (northwestern Pacific Ocean). These SBG samples have very low natural remanent magnetization intensities (NRM <50 nAm**2/g) and TEM analyses indicate a correspondingly low concentration of crystalline inclusions. Thellier experiments on samples with the strongest NRM intensity (>5*10**-11 Am**2) show a rapid acquisition of thermoremanent magnetization (TRM) with respect to NRM demagnetization. Taken at face value,this behavior implies magnetization in a very weak (617 WT) ambient field. But monitoring of magnetic hysteresis properties during the Thellier experiments (on subsamples of the SBG samples used for paleointensity determinations) indicates systematic variations in values over the same temperature range where the rapid TRM acquisition is observed. A similar change in properties during heating is observed on monitor SBG specimens using low-temperature data: with progressive heatings the Verwey transition becomes more distinct. We suggest that these experimental data record the partial melting and neocrystallization of magnetic grains in SBG during the thermal treatments required by the Thellier method,resulting in paleointensity values biased to low values. We further propose that this process is pronounced in Cretaceous and Jurassic SBG (relative to Holocene SBG) because devitrification on geologic time scales (i.e., tens of millions of years) lowers the transition temperature at which the neocrystallization can commence. Magnetic hysteresis monitoring may provide a straightforward means of detecting the formation of new magnetic inclusions in SBG during Thellier experiments.
Resumo:
Novel carbon fiber (CF)-reinforced poly(phenylene sulphide) (PPS) laminates incorporating inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles were prepared via melt-blending and hot-press processing. The influence of the IF-WS2 on the morphology, thermal, mechanical and tribological properties of PPS/CF composites was investigated. Efficient nanoparticle dispersion within the matrix was attained without using surfactants. A progressive rise in thermal stability was found with increasing IF-WS2 loading, as revealed by thermogravimetric analysis. The addition of low nanoparticle contents retarded the crystallization of the matrix, whereas concentrations equal or higher than 1.0 wt% increased both the crystallization temperature and degree of crystallinity compared to those of PPS/CF. Mechanical tests indicated that with only 1.0 wt% IF-WS2 the flexural modulus and strength of PPS/CF improved by 17 and 14%, respectively, without loss in toughness, ascribed to a synergistic effect between the two fillers. A significant enhancement in the storage modulus and glass transition temperature was also observed. Moreover, the wear rate and coefficient of friction strongly decreased, attributed to the lubricant role of the IF-WS2 combined with their reinforcing effect. These inorganic nanoparticles show great potential to improve the mechanical and tribological properties of conventional thermoplastic/CF composites for structural applications.
Resumo:
La presente memoria de tesis tiene como objetivo principal la caracterización mecánica en función de la temperatura de nueve aleaciones de wolframio con contenidos diferentes en titanio, vanadio, itria y lantana. Las aleaciones estudiadas son las siguientes: W-0.5%Y2O3, W-2%Ti, W-2% Ti-0.5% Y2O3, W-4% Ti-0.5% Y2O3, W-2%V, W- 2%Vmix, W-4%V, W-1%La2O3 and W-4%V-1%La2O3. Todos ellos, además del wolframio puro se fabrican mediante compresión isostática en caliente (HIP) y son suministradas por la Universidad Carlos III de Madrid. La investigación se desarrolla a través de un estudio sistemático basado en ensayos físicos y mecánicos, así como el análisis post mortem de las muestras ensayadas. Para realizar dicha caracterización mecánica se aplican diferentes ensayos mecánicos, la mayoría de ellos realizados en el intervalo de temperatura de 25 a 1000 º C. Los ensayos de caracterización que se llevan a cabo son: • Densidad • Dureza Vicker • Módulo de elasticidad y su evolución con la temperatura • Límite elástico o resistencia a la flexión máxima, y su evolución con la temperatura • Resistencia a la fractura y su comportamiento con la temperatura. • Análisis microestructural • Análisis fractográfico • Análisis de la relación microestructura-comportamiento macroscópico. El estudio comienza con una introducción acerca de los sistemas en los que estos materiales son candidatos para su aplicación, para comprender las condiciones a las que los materiales serán expuestos. En este caso, el componente que determina las condiciones es el Divertor del reactor de energía de fusión por confinamiento magnético. Parece obvio que su uso en los componentes del reactor de fusión, más exactamente como materiales de cara al plasma (Plasma Facing Components o PFC), hace que estas aleaciones trabajen bajo condiciones de irradiación de neutrones. Además, el hecho de que sean materiales nuevos hace necesario un estudio previo de las características básicas que garantice los requisitos mínimos antes de realizar un estudio más complejo. Esto constituye la principal motivación de la presente investigación. La actual crisis energética ha llevado a aunar esfuerzos en el desarrollo de nuevos materiales, técnicas y dispositivos para la aplicación en la industria de la energía nuclear. El desarrollo de las técnicas de producción de aleaciones de wolframio, con un punto de fusión muy alto, requiere el uso de precursores de sinterizado para lograr densificaciones más altas y por lo tanto mejores propiedades mecánicas. Este es el propósito de la adición de titanio y vanadio en estas aleaciones. Sin embargo, uno de los principales problemas de la utilización de wolframio como material estructural es su alta temperatura de transición dúctil-frágil. Esta temperatura es característica de materiales metálicos con estructura cúbica centrada en el cuerpo y depende de varios factores metalúrgicos. El proceso de recristalización aumenta esta temperatura de transición. Los PFC tienen temperaturas muy altas de servicio, lo que facilita la recristalización del metal. Con el fin de retrasar este proceso, se dispersan partículas insolubles en el material permitiendo temperaturas de servicio más altas. Hasta ahora se ha utilizado óxidos de torio, lantano e itrio como partículas dispersas. Para entender cómo los contenidos en algunos elementos y partículas de óxido afectan a las propiedades de wolframio se estudian las aleaciones binarias de wolframio en comparación con el wolframio puro. A su vez estas aleaciones binarias se utilizan como material de referencia para entender el comportamiento de las aleaciones ternarias. Dada la estrecha relación entre las propiedades del material, la estructura y proceso de fabricación, el estudio se completa con un análisis fractográfico y micrográfico. El análisis fractográfico puede mostrar los mecanismos que están implicados en el proceso de fractura del material. Por otro lado, el estudio micrográfico ayudará a entender este comportamiento a través de la identificación de las posibles fases presentes. La medida del tamaño de grano es una parte de la caracterización microestructural. En esta investigación, la medida del tamaño de grano se llevó a cabo por ataque químico selectivo para revelar el límite de grano en las muestras preparadas. Posteriormente las micrografías fueron sometidas a tratamiento y análisis de imágenes. El documento termina con una discusión de los resultados y la compilación de las conclusiones más importantes que se alcanzan después del estudio. Actualmente, el desarrollo de nuevos materiales para aplicación en los componentes de cara al plasma continúa. El estudio de estos materiales ayudará a completar una base de datos de características que permita hacer una selección de ellos más fiable. The main goal of this dissertation is the mechanical characterization as a function of temperature of nine tungsten alloys containing different amounts of titanium, vanadium and yttrium and lanthanum oxide. The alloys under study were the following ones: W-0.5%Y2O3, W-2%Ti, W-2% Ti-0.5% Y2O3, W-4% Ti-0.5% Y2O3, W-2%V, W- 2%Vmix, W-4%V, W-1%La2O3 and W-4%V-1%La2O3. All of them, besides pure tungsten, were manufactured using a Hot Isostatic Pressing (HIP) process and they were supplied by the Universidad Carlos III de Madrid. The research was carried out through a systematic study based on physical and mechanical tests as well as the post mortem analysis of tested samples. Diverse mechanical tests were applied to perform this characterization; most of them were conducted at temperatures in the range 25-1000 ºC. The following characterization tests were performed: • Density • Vickers hardness • Elastic modulus • Yield strength or ultimate bending strength, and their evolution with temperature • Fracture toughness and its temperature behavior • Microstructural analysis • Fractographical analysis • Microstructure-macroscopic relationship analysis This study begins with an introduction regarding the systems where these materials could be applied, in order to establish and understand their service conditions. In this case, the component that defines the conditions is the Divertor of magnetic-confinement fusion reactors. It seems obvious that their use as fusion reactor components, more exactly as plasma facing components (PFCs), makes these alloys work under conditions of neutron irradiation. In addition to this, the fact that they are novel materials demands a preliminary study of the basic characteristics which will guarantee their minimum requirements prior to a more complex study. This constitutes the motivation of the present research. The current energy crisis has driven to join forces so as to develop new materials, techniques and devices for their application in the nuclear energy industry. The development of production techniques for tungsten-based alloys, with a very high melting point, requires the use of precursors for sintering to achieve higher densifications and, accordingly, better mechanical properties. This is the purpose of the addition of titanium and vanadium to these alloys. Nevertheless, one of the main problems of using tungsten as structural material is its high ductile-brittle transition temperature. This temperature is characteristic of metallic materials with body centered cubic structure and depends on several metallurgical factors. The recrystallization process increases their transition temperature. Since PFCs have a very high service temperature, this facilitates the metal recrystallization. In order to inhibit this process, insoluble particles are dispersed in the material allowing higher service temperatures. So far, oxides of thorium, lanthanum and yttrium have been used as dispersed particles. Tungsten binary alloys are studied in comparison with pure tungsten to understand how the contents of some elements and oxide particles affect tungsten properties. In turn, these binary alloys are used as reference materials to understand the behavior of ternary alloys. Given the close relationship between the material properties, structure and manufacturing process, this research is completed with a fractographical and micrographic analysis. The fractographical analysis is aimed to show the mechanisms that are involved in the process of the material fracture. Besides, the micrographic study will help to understand this behavior through the identification of present phases. The grain size measurement is a crucial part of the microstructural characterization. In this work, the measurement of grain size was carried out by chemical selective etching to reveal the boundary grain on prepared samples. Afterwards, micrographs were subjected to both treatment and image analysis. The dissertation ends with a discussion of results and the compilation of the most important conclusions reached through this work. The development of new materials for plasma facing components application is still under study. The analysis of these materials will help to complete a database of the features that will allow a more reliable materials selection.
Resumo:
The thermal, mechanical, and adhesive properties of nanoclay-modified adhesives were investigated. Two organically modified montmorillonites: Cloisite 93A (C93A) and Nanomer I.30E (I.30E) were used as reinforcement of an epoxy adhesive. C93A and I.30E are modified with tertiary and primary alkyl ammonium cations, respectively. The aim was to study the influence of the organoclays on the curing, and on the mechanical and adhesive properties of the nanocomposites. A specific goal was to compare their behavior with that of Cloisite30B/epoxy and Cloisite15A/ epoxy nanocomposites that we have previously studied. Both C30B and C15A are modified with quaternary alkyl ammonium cations. Differential scanning calorimetry results showed that the clays accelerate the curing reaction, an effect that is related to the chemical structure of the ammonium cations. The three Cloisite/nanocomposites showed intercalated clay structures,the interlayer distance was independent of the clay content. The I.30E/epoxy nanocomposites presented exfoliated structure due to the catalytic effect of the organic modifier. Clay-epoxy nanocompo-sites showed lower glass transition temperature (Tg) and higher values of storage modulus than neat epoxy thermoset, with no significant differences between exfoliated or intercalated nanocom-posites. The shear strength of aluminum joints using clay/epoxy adhesives was lower than with the neat epoxy adhesive. The wáter aging was less damaging for joints with I.30E/epoxy adhesive.
Resumo:
El wolframio (W) y sus aleaciones se consideran los mejores candidatos para la construcción del divertor en la nueva generación de reactores de fusión nuclear. Este componente va a recibir las cargas térmicas más elevadas durante el funcionamiento del reactor ya que estará en contacto directo con el plasma. En los últimos años, después de un profundo análisis y siguiendo una estrategia de reducción de costes, la Organización de ITER tomó la decisión de construir el divertor integramente de wolframio desde el principio. Por ello, el wolframio no sólo actuará como material en contacto con el plasma (PFM), sino que también tendría aplicaciones estructurales. El wolframio, debido a sus excelentes propiedades termo-físicas, cumple todos los requerimientos para ser utilizado como PFM, sin embargo, su inherente fragilidad pone en peligro su uso estructural. Por tanto, uno de los principales objetivos de esta tesis es encontrar una aleación de wolframio con menor fragilidad. Durante éste trabajo, se realizó la caracterización microstructural y mecánica de diferentes materiales basados en wolframio. Sin embargo, ésta tarea es un reto debido a la pequeña cantidad de material suministrado, su reducido tamaño de grano y fragilidad. Por ello, para una correcta medida de todas las propiedades físicas y mecánicas se utilizaron diversas técnicas experimentales. Algunas de ellas se emplean habitualmente como la nanoindentación o los ensayos de flexión en tres puntos (TPB). Sin embargo, otras fueron especificamente desarrolladas e implementadas durante el desarrollo de esta tesis como es el caso de la medida real de la tenacidad de fractura en los materiales masivos, o de las medidas in situ de la tenacidad de fractura en las láminas delgadas de wolframio. Diversas composiciones de aleaciones de wolframio masivas (W-1% Y2O3, W-2% V-0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 y W-4% Ti-1% La2O3) se han estudiado y comparado con un wolframio puro producido en las mismas condiciones. Estas aleaciones, producidas por ruta pulvimetalúrgica de aleado mecánico (MA) y compactación isostática en caliente (HIP), fueron microstructural y mecánicamente caracterizadas desde 77 hasta 1473 K en aire y en alto vacío. Entre otras propiedades físicas y mecánicas se midieron la dureza, el módulo elástico, la resistencia a flexión y la tenacidad de fractura para todas las aleaciones. Finalmente se analizaron las superficies de fractura después de los ensayos de TPB para relacionar los micromecanismos de fallo con el comportamiento macroscópico a rotura. Los resultados obtenidos mostraron un comportamiento mecánico frágil en casi todo el intervalo de temperaturas y para casi todas las aleaciones sin mejoría de la temperatura de transición dúctil-frágil (DBTT). Con el fin de encontrar un material base wolframio con una DBTT más baja se realizó también un estudio, aún preliminar, de láminas delgadas de wolframio puro y wolframio dopado con 0.005wt.% potasio (K). Éstas láminas fueron fabricadas industrialmente mediante sinterizado y laminación en caliente y en frío y se sometieron posteriormente a un tratamiento térmico de recocido desde 1073 hasta 2673 K. Se ha analizado la evolución de su microestructura y las propiedades mecánicas al aumentar la temperatura de recocido. Los resultados mostraron la estabilización de los granos de wolframio con el incremento de la temperatura de recocido en las láminas delgadas de wolframio dopado con potasio. Sin embargo, es necesario realizar estudios adicionales para entender mejor la microstructura y algunas propiedades mecánicas de estos materiales, como la tenacidad de fractura. Tungsten (W) and tungsten-based alloys are considered to be the best candidate materials for fabricating the divertor in the next-generation nuclear fusion reactors. This component will experience the highest thermal loads during the operation of a reactor since it directly faces the plasma. In recent years, after thorough analysis that followed a strategy of cost reduction, the ITER Organization decided to built a full-tunsgten divertor before the first nuclear campaigns. Therefore, tungsten will be used not only as a plasma-facing material (PFM) but also in structural applications. Tungsten, due to its the excellent thermo-physical properties fulfils the requirements of a PFM, however, its use in structural applications is compromised due to its inherent brittleness. One of the objectives of this phD thesis is therefore, to find a material with improved brittleness behaviour. The microstructural and mechanical characterisation of different tunsgten-based materials was performed. However, this is a challenging task because of the reduced laboratory-scale size of the specimens provided, their _ne microstructure and their brittleness. Consequently, many techniques are required to ensure an accurate measurement of all the mechanical and physical properties. Some of the applied methods have been widely used such as nanoindentation or three-point bending (TPB) tests. However, other methods were specifically developed and implemented during this work such as the measurement of the real fracture toughness of bulk-tunsgten alloys or the in situ fracture toughness measurements of very thin tungsten foils. Bulk-tunsgten materials with different compositions (W-1% Y2O3, W-2% V- 0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 and W-4% Ti-1% La2O3) were studied and compared with pure tungsten processed under the same conditions. These alloys, produced by a powder metallurgical route of mechanical alloying (MA) and hot isostatic pressing (HIP), were microstructural and mechanically characterised from 77 to 1473 K in air and under high vacuum conditions. Hardness, elastic modulus, flexural strength and fracture toughness for all of the alloys were measured in addition to other physical and mechanical properties. Finally, the fracture surfaces after the TPB tests were analysed to correlate the micromechanisms of failure with the macroscopic behaviour. The results reveal brittle mechanical behaviour in almost the entire temperature range for the alloys and micromechanisms of failure with no improvement in the ductile-brittle transition temperature (DBTT). To continue the search of a tungsten material with lowered DBTT, a preliminary study of pure tunsgten and 0.005 wt.% potassium (K)-doped tungsten foils was also performed. These foils were industrially produced by sintering and hot and cold rolling. After that, they were annealed from 1073 to 2673 K to analyse the evolution of the microstructural and mechanical properties with increasing annealing temperature. The results revealed the stabilisation of the tungsten grains with increasing annealing temperature in the potassium-doped tungsten foil. However, additional studies need to be performed to gain a better understanding of the microstructure and mechanical properties of these materials such as fracture toughness.