977 resultados para Subcellular phenotype
Resumo:
beta-Catenin is a bifunctional protein related to cell adhesion and gene transcription when activated by Wnt pathway. Altered expression of beta-catenin was related to loss of differentiation, more aggressive phenotype, increase of tumor invasion, and poor prognosis in a number of different cancers. Actinic cheilitis is caused by excessive exposure to ultraviolet radiation and has a high potential to suffer malignant transformation into squamous cell carcinoma (SCC) of the lip, the most frequent oral malignancy. Studies of oral cancer have shown the correlation of beta-catenin expression and oral SCC prognosis, and loss of membrane expression may be considered as a potential marker for early tumor recurrence. Thirty-five cases of actinic cheilitis and 12 cases of SCC of the lip were select and submitted to immunohistochemical staining using beta-catenin antibody. beta-Catenin was positive on the membrane for all cases. Eighty-five percent of actinic cheilitis cases showed cytoplasmatic staining, and 22% nuclear staining. Eighty-three percent of SCC was positive for beta-catenin, and none of them had nuclear staining. Cytoplasmatic and nuclear staining of beta-catenin on studied cases point to pathway alterations. Results demonstrated that beta-catenin expression is altered on epithelial dysplasia, and it is related to degree of alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Aim: The aim of the present study was to assess the influence of the chemical characteristics and roughness of titanium surfaces on the viability, proliferation and differentiation of osteoblast-like cells cultured in a medium supplemented with recombinant human bone morphogenetic protein-7 (rhBMP-7). Material and methods: Osteo-1 cells were grown on titanium disks presenting with the following surfaces: (1) machined, (2) coarse grit-blasted and acid-attacked (SLA) and (3) chemically modified SLA (SLAmod) in the absence or presence of 20 ng/ml rhBMP-7 in culture medium. The viability and number of osteo-1 cells were evaluated after 24 h. Analyses of total protein content (TP) and alkaline phosphatase (AP) activity at 7, 14 and 21 days, collagen content at 7 and 21 days and mineralized matrix formation at 21 days were performed. Results: Cell viability (P=0.5516), cell number (P=0.3485), collagen content (P=0.1165) and mineralized matrix formation (P=0.5319) were not affected by the different surface configurations or by the addition of rhBMP-7 to the medium. Osteo-1 cells cultured on SLA surfaces showed a significant increase in TP at 21 days. The ALPase/TP ratio (P=0.00001) was affected by treatment and time. Conclusion: The results suggest that the addition of rhBMP-7 to the culture medium did not exert any effect on the viability, proliferation or differentiation of osteoblast-like cells grown on the different surfaces tested. All titanium surfaces analyzed allowed the complete expression of the osteoblast phenotype such as matrix mineralization by osteo-1 cells.
Resumo:
Oral squamous cell carcinoma (OSCC) is a cancerous lesion with high incidence worldwide. The immunoregulatory events leading to OSCC persistence remain to be elucidated. Our hypothesis is that regulatory T cells (Tregs) are important to obstruct antitumor immune responses in patients with OSCC. In the present study, we investigated the frequency, phenotype, and activity of Tregs from blood and lesions of patients with OSCC. Our data showed that > 80% of CD4(+)CD25(+) T cells isolated from PBMC and tumor sites express FoxP3. Also, these cells express surface Treg markers, such as GITR, CD45RO, CD69, LAP, CTLA-4, CCR4, and IL-10. Purified CD4(+)CD25(+) T cells exhibited stronger suppressive activity inhibiting allogeneic T-cell proliferation and IFN-gamma production when compared with CD4(+)CD25(+) T cells isolated from healthy individuals. Interestingly, approximately 25% of CD4(+)CD25(-) T cells of PBMC from patients also expressed FoxP3 and, although these cells weakly suppress allogeneic T cells proliferative response, they inhibited IFN-gamma and induced IL-10 and TGF-beta secretion in these co-cultures. Thus, our data show that Treg cells are present in OSCC lesions and PBMC, and these cells appear to suppress immune responses both systemically and in the tumor microenvironment.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The purpose of this study was to evaluate the papilla level adjacent to single-tooth implants in the maxillary anterior region in individuals with cleft lip, alveolus, and palate to verify whether there is correlation among the vertical distance, horizontal distance, dental/prosthetic crown shape, and periodontal/peri-implant biotype with the presence of interproximal papilla. Design: Cross-sectional. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo (HRAC/USP). Patients: 77 papillae in 40 patients. Interventions: The periodontal/peri-implant biotype was clinically evaluated and characterized as thin or thick. Intraoral photographs were used to evaluate the presence or absence of papilla. Main Outcome Measures: Classification in scores (0 to 3) and determination of length (CL) and width (CW) of crowns adjacent to papillae. The CW/CL ratio was calculated for each crown in order to characterize it as square-shaped or triangular-shaped. The vertical and horizontal distances were obtained by radiographic evaluation. Results: The correlations between vertical distance and papilla score and horizontal distance and papilla score were statistically significant (p= .02 and p = .01). There was no significant difference between crown shape and periodontal/peri-implant biotype in distinct correlations with the papilla score (p = .41 and p = .07). Conclusion: The results suggest that the vertical and horizontal distances may have independent or combined relationship with the existence of interproximal papilla; the periodontal/peri-implant biotype (phenotype) was not correlated with the presence or absence of papilla, as well as the shape of the dental/prosthetic crown.
Resumo:
High-level microsatellite instability (AISI-H) is demonstrated in 10 to 15% of sporadic colorectal cancers and in most cancers presenting In the inherited condition hereditary nonpolyposis colorectal cancer (HNPCC). Distinction between these categories of MSI-H cancer is of clinical importance and the aim of this study was to assess clinical, pathological, and molecular features that might he discriminatory. One hundred and twelve MSI-H colorectal cancers from families fulfilling the Bethesda criteria were compared with 57 sporadic MSI-H colorectal cancers. HNPCC cancers presented at a lower age (P < 0.001) with no sporadic MSI-H cancer being diagnosed before the age of 57 years. MSI was less extensive in HNPCC cancers with 72% microsatellite markers showing band shifts compared with 87% in sporadic tumors (P < 0.001). Absent immunostaining for hMSH2 was only found in HNPCC tumors. Methylation of bMLH1 was observed in 87% of sporadic cancers but also in 55% of HNPCC tumors that showed loss of expression of hMLH1 (P = 0.02). HNPCC cancers were more frequently characterized by aberrant beta -catenin immunostaining as evidenced by nuclear positivity (P < 0.001). Aberrant p53 immunostaining was infrequent in both groups. There were no differences with respect to 5q loss of heterozygosity or codon 12 K-ras mutation, which were infrequent in both groups. Sporadic MSI-H cancers were more frequently heterogeneous (P < 0.001), poorly differentiated (P = 0.02), mucinous (P = 0.02), and proximally located (P = 0.04) than RNPCC tumors. In sporadic MSI-H cancers, contiguous adenomas were likely to be serrated whereas traditional adenomas were dominant in HNPCC. Lymphocytic infiltration was more pronounced in HNPCC but the results did not reach statistical significance. Overall, HNPCC cancers were more like common colorectal cancer in terms of morphology and expression of beta -catenin whereas sporadic MSI-H cancers displayed features consistent with a different morphogenesis. No individual feature was discriminatory for all RN-PCC cancers. However, a model based on four features was able to classify 94.5% of tumors as sporadic or HNPCC. The finding of multiple differences between sporadic and familial MSI-H colorectal cancer with respect to both genotype and phenotype is consistent with tumorigenesis through parallel evolutionary pathways and emphasizes the importance of studying the two groups separately.
Resumo:
Molecular events in early colorectal cancers (CRCs) have not been well elucidated because of the low incidence of early CRCs in clinical practice. Therefore, we studied 104 sporadic early CRCs with invasion limited to submucosa compared with 116 advanced CRCs. Loss of heterozygosity as well as microsatellite instability (MSI) status was examined. A significantly high frequency of low-level MSI (MSI-L) phenotype was detected in early CRCs (51.0%) compared with advanced CRCs (25.9%; P = 0.0001). In early and advanced CRCs, samples with MSI-L phenotype differed from microsatellite stable (MSS) phenotype with respect to loss of heterozygosity at 1p32 and 8p12-22. MSI-L is a frequent genetic event in early CRCs and may be a novel pathway in colorectal carcinogenesis distinct from both MSI-H and MSS.
Resumo:
Important pathogenic alterations within established cancers are acquired during the premalignant stage. These genetic alterations can be grouped into specific neoplastic pathways that differ within and between anatomical sites. By understanding the mechanisms that determine the initiation and progression of each pathway, it will be possible to develop novel approaches to the diagnosis, prevention and treatment of cancer. This chapter outlines the principles underlying the molecular characterization of pre-malignant lesions, taking colorectal neoplasia as the main model.
Resumo:
Objectives: This study evaluated key parameters of the in vitro osteogenesis induced by osteoblastic cells obtained from sites submitted to sinus grafting with anorganic bovine bone (ABB) in comparison with cells derived from bone sites of the same patients. Materials and methods: In three patients, the augmentation of maxillary sinus was carried out using ABB (Bio-Oss (R)). After at least 6 months, during the surgical intervention for titanium implants placement, biopsies were taken from these areas using trephine burs (grafted group). Bone fragments, of the same patients, from sites that had not received graft were also obtained with trephine burs and used as a control group. Osteoblastic cells were obtained from grafted and control groups by enzymatic digestion and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured in 24-well culture plates. Cell adhesion was evaluated at 24 h. For proliferation and viability assay, cells were cultured for 1, 3, 7, and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 3, 7, 10, 14, 17, and 21 days. Cultures were stained with Alizarin red S at 21 days, for detection of mineralized matrix. Data were compared by Student`s t-test. Results: Cell adhesion and viability were not affected by cell source (P>0.05). Total protein content was greater (P<0.05) for grafted group. Cell proliferation, ALP activity, and bone-like nodule formation were all greater (P<0.05) for the control group. Conclusions: Taken together, these results indicate that the in vivo long-term contact of cells with ABB downregulates the expression of osteoblast phenotype and consequently the in vitro osteogenesis.
Resumo:
Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2`-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure ""lesioned"" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain. (C) 2008 Elsevier B.V. All rights reserved