920 resultados para Spindle-cell-carcinoma
Resumo:
QUESTION UNDER STUDY/PRINCIPLES This study aimed to evaluate trends in the incidence of oesophageal and gastric cancer by anatomical location and histology using nationally representative Swiss data. METHODS We included all oesophageal and gastric cancers recorded in 10 Swiss population-based cancer registries 1982-2011. We calculated age-standardised incidence rates (ASIRs) per 100 000 person-years (PY) (European standard) for both cancer sites stratified by sex, language region (German, French-Italian), morphology and anatomical location. To assess time trends, we estimated annual percentage changes (APCs) with 95% confidence intervals (95% CIs). RESULTS ASIR of oesophageal adenocarcinoma increased in both sexes and language regions (p <0.001). The steepest increase occurred in males of the German-speaking region (APC 6.8%, 95% CI 5.8-7.8) with ASIRs of 0.8 per 100,000 PY in 1982-1987 and 3.9 per 100.000 PY in 2007-2011. Incidence of oesophageal squamous cell carcinoma decreased significantly in males of both language regions by around -1.5% per year. In contrast, a slight but significant increase (APC 1.4%, 95% CI 0.3-2.4]) of oesophageal squamous cell carcinoma was observed in females of the German-speaking region. We observed stable rates for cancer of the gastric cardia. The incidence of noncardia gastric cancer decreased substantially in both sexes and language regions (p <0.001). CONCLUSION In Switzerland, the incidence of oesophageal adenocarcinoma has risen whereas incidence of noncardia gastric cancer has decreased substantially as observed in other developed countries.
Resumo:
BACKGROUND To analyze the impact of weight loss before and during chemoradiation on survival outcomes in patients with locally advanced head and neck cancer. METHODS From 07/1994-07/2000 a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to either hyperfractionated radiation therapy alone or the same radiation therapy combined with two cycles of concomitant cisplatin. The primary endpoint was time to any treatment failure (TTF); secondary endpoints were locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS) and overall survival (OS). Patient weight was measured 6 months before treatment, at treatment start and treatment end. RESULTS The proportion of patients with >5% weight loss was 32% before, and 51% during treatment, and the proportion of patients with >10% weight loss was 12% before, and 17% during treatment. After a median follow-up of 9.5 years (range, 0.1 - 15.4 years) weight loss before treatment was associated with decreased TTF, LRRFS, DMFS, cancer specific survival and OS in a multivariable analysis. However, weight loss during treatment was not associated with survival outcomes. CONCLUSIONS Weight loss before and during chemoradiation was commonly observed. Weight loss before but not during treatment was associated with worse survival.
Resumo:
High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.
Resumo:
OBJECTIVE Our aim was to compare outcomes with and without up-front neck dissection prior to (chemo)radiotherapy in head and neck squamous cell carcinoma. STUDY DESIGN Case series with chart review. SETTING Tertiary referral center. SUBJECTS AND METHODS Outcomes of oropharyngeal, laryngeal, and hypopharyngeal squamous cell carcinoma cases with neck lymph node metastases treated from January 2001 to March 2012 were analyzed. Due to imbalances in baseline characteristics between groups treated with (n = 129) and without (n = 95) up-front neck dissection, propensity score matching was performed. RESULTS Median follow-up was 48 months (range, 12-148). With up-front neck dissection, the hazard ratio for the primary end point, disease-free survival, was 0.63 (95% confidence interval: 0.37-1.06, P = .08). Up-front neck dissection reduced acute grade ≥3 toxicity significantly when xerostomia was excluded (odds ratio: 0.40, 95% confidence interval: 0.20-0.82, P = .012). CONCLUSION Our results indicate less acute treatment toxicity without any significant difference in terms of oncologic outcome with up-front neck dissection prior to (chemo)radiotherapy as compared with (chemo)radiotherapy alone. Well-designed randomized trials are required to verify this result and further investigate the impact of this strategy on late toxicity and oncologic outcome.
Resumo:
Topical photodynamic therapy (PDT) is a widely approved therapy for actinic keratoses, squamous cell carcinoma in-situ, superficial and certain thin basal cell carcinomas. Recurrence rates are typically equivalent to existing therapies, although inferior to surgery for nodular basal cell carcinoma. PDT can be used both as a lesional or as a field therapy and has the potential to delay/reduce the development of new lesions. PDT has also been studied for its place in the treatment of, as well as its potential to prevent, superficial skin cancers in immune-suppressed patients, although sustained clearance rates are lower than for immunocompetent individuals. Many additional indications have been evaluated, including photo-rejuvenation and inflammatory and infective dermatoses. This S2 guideline considers all current and emerging indications for the use of topical photodynamic therapy in Dermatology, prepared by the PDT subgroup of the European Dermatology Forum guidelines committee. It presents consensual expert recommendations reflecting current published evidence. An unabridged version of this guideline is available online at: http://www.euroderm.org/edf/index.php/edf-guidelines.
Resumo:
BACKGROUND The aim of this study was to assess sex-associated differences in lung cancer patients in Eastern Switzerland. METHODS All 670 lung cancer patients referred to the cancer center in St. Gallen between January 2000 and December 2005 were retrospectively analyzed. We investigated sex-associated differences in age, smoking habits, histology, stage, treatment and survival. RESULTS There were 474 (71%) men and 196 (29%) women with lung cancer. Mean age at the time of diagnosis was 64 years for women and 67 years for men (p = 0.01). Of the patients <55 years of age, 47 (24%) were women and only 65 (14%) were men. Men smoked significantly more than women (median pack-years: 50 vs. 30; p < 0.001). Of the heavy smokers (>40 pack-years), 278 (56%) were men and 68 (33%) were women. More men had squamous cell carcinoma (36%) than women (17%). Conversely, more women presented with adenocarcinoma (48%) than men (27%). No significant sex-associated differences were observed when analyzing first treatments received. Median overall survival was 10 months for both sexes. CONCLUSIONS In Eastern Switzerland, women with lung cancer were younger, more likely to have smoked significantly less and more likely to have adenocarcinoma, compared to men with lung cancer. These findings are consistent with those found in other western populations.
Resumo:
A combination of psoralens and ultraviolet-A radiation referred to as PUVA, is widely used in the treatment of psoriasis. PUVA therapy is highly effective in killing hyperproliferative cells, but its mechanism of action has not been fully elucidated. Psoralen binds to DNA, and upon photoactivation by UVA, it forms monofunctional adducts and interstrand cross-links. PUVA treatment has been shown to be mutagenic and to produce tumors in animals. In addition, epidemiological studies have reported a 10 to 15 percent increased risk of developing squamous cell carcinoma in individuals treated chronically with PUVA. However, it remains a treatment for skin disorders such as psoriasis because its benefits outweigh its risks. The widespread use of PUVA therapy and its associated cancer risk requires us to understand the molecular mechanisms by which PUVA induces cell death. Immortalized JB6 mouse epidermal cells, p53−/− mice, and Fas Ligand−/− (gld) mice were used to investigate the molecular mechanism by which PUVA kills cells. Treatment of JB6 cells with 10 μg/ml 8-methoxypsoralen followed by irradiation with 20 kJ/m2 UVA resulted in cell death. The cells exhibited morphological and biochemical characteristics of apoptosis such as chromatin condensation, DNA ladder formation, and TUNEL-positivity. PUVA treatment stabilized and phosphorylated p53 leading to its activation, as measured by nuclear localization and induction of p21Waf/Cip1, a transcriptional target of p53. Subsequent in vivo studies revealed that there was statistically significantly less apoptosis in p53 −/− mice than in p53+/+ mice at 72 hours after PUVA. In addition, immunohistochemical analysis revealed more Fas and FasL expression in p53+/+ mice than in p53−/− mice, suggesting that p53 is required to transcriptionally activate Fas, which in turn causes the cells to undergo apoptosis. Studies with gld mice confirmed a role for Fas/FasL interactions in PUVA-induced apoptosis. There was statistically significantly less apoptosis in gld mice compared with wild-type mice 24, 48, and 72 hours after PUVA. These results demonstrate that PUVA-induced apoptosis in mouse epidermal cells requires p53 and Fas/FasL interactions. These findings may be important for designing effective treatments for diseases such as psoriasis without increasing the patient's risk for skin cancer. ^
Resumo:
Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^
Resumo:
Non-melanoma skin cancer is the most frequently diagnosed malignancy in the United States of which basal cell carcinoma (BCC) accounts for 65%. It has recently been determined that deregulation of the sonic hedgehog (shh) pathway leads to the development of BCC. Shh, gli-1, gli-2 gli-3, ptc and smo are overexpressed in BCC and overexpression of these genes in the epidermis results in formation of BCC-like tumors. Despite these observations, the mechanisms by which the pathway controls epidermal homeostasis and the development of the malignant phentotype are unknown. This study assessed the role of the shh pathway in epidermal homeostasis through regulation of apoptosis and differentiation. ^ The anti-apoptotic protein, bcl-2 is overexpressed in BCC, however transcriptional regulators of bcl-2 in the epidermis are unknown. Transient transfection of primary keratinocytes with gli-1 resulted in an increase of bcl-2 expression. Database analysis revealed seven candidate gli binding sites on the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. An N-terminal mutant of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. The region −428 to −420 was found to be important for gli-1 regulation through gel shift, luciferase assays and site-directed mutagenesis. ^ In order to assess the ability of the shh pathway to regulate keratinocyte differentiation, HaCaT keratinocytes overexpressing sonic hedgehog, were grown in organotypic raft culture. Overexpression of shh induced a basal cell phenotype compared to vector control, as evidenced by transmural staining of cytokeratin 14 and altered Ki67 staining. Shh also induced keratinocyte invasion into the underlying collagen. This was associated with increased phosphorylation of EGFR, jnk and raf and increased expression of c-jun, mmp-9 and Ki67. Interestingly, shh overexpression in HaCaTs did not induce the typical downstream effects of shh signaling, suggesting a gli-independent mechanism. Sonic hedgehog's ability to induce an invasive phenotype was found to be dependent on activation of the EGF pathway as inhibition of EGFR activity with AG1478 and c-225 was able to reduce the invasiveness of HaCaT shh keratinocytes, whereas treatment with EGF augmented the invasiveness of the HaCaT shh clones. ^ These studies reveal the importance of the sonic hedgehog pathway in epidermal homeostasis by regulation of apoptosis through bcl-2, and control of keratinocyte differentiation and invasion through activation of the EGF pathway. They further suggest potential mechanisms by which deregulation of the shh pathway may lead to the development of the malignant phenotype. ^
Resumo:
Retinoids, important modulators of squamous epithelial differentiation and proliferation, are effective in the treatment and prevention of squamous epithelial cancers, including squamous cell carcinomas (SCCs) of the skin. However, the mechanism is not well understood. Retinoids exert their effects primarily through two nuclear receptor families, retinoic acid receptors (RARα, β and γ) and retinoid X receptors (RXR(α, β and γ), ligand-dependent DNA-binding transcription factors that are members of the steroid hormone receptor superfamily. Retinoid receptor loss has been correlated with squamous epithelial malignancy. This has lead to the hypothesis that reduced RARγ expression and the resulting suppression of retinoid signaling contributes to squamous epithelial malignancy. To test this hypothesis, I attempted to reduce or abolish expression of RARγ, the predominant RAR in squamous epithelia, in several nontumorigenic human squamous epithelial cell lines. The most useful of these cell lines has been SqCCY1, the human head and neck squamous cell carcinoma cell line, along with several subclones stably transfected with RARγ sense and antisense expression constructs. By several criteria, we observed an overall suppression of squamous differentiation in RARγ sense transfectants and an enhancement in RARγ antisense transfectants, relative to parental SqCCY1 cells. We also observed that both sense and antisense cells could form tumors in athymic mice in vivo, while parental SqCCY1 cells could not. Although these results appear contradictory, several conclusions can be drawn. First, loss of RARγ contributes to squamous epithelial tumorigenesis. Second, overexpression of RARγ leads to tumor formation, suppressing differentiation and promoting proliferation, possibly due to a competitive inhibition of limiting concentrations of RXRα, a common heterodimeric partner for many nuclear receptors in addition to RARs, representing a mechanism for RARγ to modulate squamous epithelial homeostasis. The cause for tumorigenesis in the two conditions is likely due to different mechanisms/roles of RARγ in the cell, with the former as a retinoid signaling regulator; and the latter as an RXRα concentration modulator. Finally, High level of RARγ expression sensitizes cells to environmental RA, enhancing RARγ/RXRα-mediated RA signaling. Therefore, RA should be used in skin lesions with suppressed RARγ expression levels, not in skin lesions with overexpressed RARγ levels. ^
Resumo:
Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^
Resumo:
Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^
Resumo:
Bladder cancer is the fifth most common cancer with more than 50,000 cases diagnosed each year. Interferon-α (IFNα) is mostly used in combination with BCG for the treatment of transitional cell carcinoma (TCC). To examine the effects of IFNα on bladder cancer cells, I analyzed a panel of 20 bladder cancer cell lines in terms of their sensitivity to IFNα-induced apoptosis and the underlying mechanisms. I identified three categories: cells that die after 48hr, after 72h, and cells resistant even after 72hr of IFNα treatment. Examination of the IFN-signal transduction pathway revealed that the defect was not due to abrogation of IFN signaling. Further analysis demonstrated dependency of IFN-induced apoptosis on caspase-8, implicating the role of death receptors in IFN-induced cell death. Of the six most-IFN-sensitive cell lines, the majority upregulated Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) at the mRNA and protein level and IFN-induced cell death was mediated through TRAIL, while a minority of the most IFN-sensitive cells undergo apoptosis through a TNFα-dependent mechanism. IFNα resistance was due to either absence of TRAIL upregulation at the mRNA or protein level, resistance to exogenous rhTRAIL itself or lack of sensitization to IFN-induced cell death. Downregulation of XIAP, or XIAP inactivation through its regulator NFκB has been reported to sensitize tumor cells to death receptor-induced cell death. Baseline and IFN-inducible XIAP levels were examined in the most and least IFN-sensitive cells, knocking down XIAP and the p65 subunit of NFκB enhanced IFN-induced cell death, implicating XIAP downregulation as a mechanism through which bladder cancer cells are sensitized to IFN-induced apoptosis. To determine whether or not the proteasome inhibitor Bortezomib (BZ) sensitizes bladder cancer cells to IFN-induced cell death, the combined effects of IFN+BZ and the underlying molecular mechanisms were examined both in vitro and in vivo using two bladder xenograft models. In both models, tumor growth inhibition was the result of either increased cell death of tumor cells exerted by the two agents and/or inhibition of angiogenesis. In vitro, MAP downregulation in response to the combined treatment of IFN+BZ accounts for one of the mechanisms mediating IFN+BZ cell death in bladder cancer cells. ^
Resumo:
Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^
Resumo:
A rare familial cancer syndrome involving childhood brain tumors (CBT), breast cancer, sarcomas and an array of other tumors has been described (Li and Fraumeni 1969, 1975, 1982, 1987). A survey of CBT identified through the Connnecticut Tumor Registry in 1984 revealed a high frequency of CBT, leukemia and other childhood cancer in siblings of CBT patients (Farwell and Flannery, 1984). Other syndromes such as neurofibromatosis and nevoid basal cell carcinoma syndrome have also been associated with CBT; however, no systematic family studies have been conducted to determine the extent to which cancer aggregates in family members of CBT patients. This family study was designed to determine the frequency of cancer aggregation overall or at specific sites, to determine the frequency of known or potentially hereditary syndromes in families of CBT patients, and to determine a genetic model to characterize familial cancer syndromes and to identify specific kindreds to which such a model(s) might apply. This study includes 244 confirmed CBT patients referred to the University of Texas M. D. Anderson Cancer Center between the years 1944 and 1983, diagnosed under the age of 15 years and resident in the U.S. or Canada. Family histories were obtained on the proband's first (parents, siblings and offspring) and second degree (proband's aunts, uncles and grandparents) relatives following sequential sampling scheme rules. To determine if cancer aggregates in families, we compared the cancer experience in the population to that expected in the general population using Connecticut Tumor Registry calendar year, age, race and sex-specific rates. The standardized incidence ratio (SIR) for cancer overall was 0.91 (41 observed (O) and 44.94 expected (E); 95% Confidence Interval (CI) = 0.65-1.24). We observed a significant excess of colon cancer among the proband's first degree relatives (O/E = 5/1.64; 95% CI = 1.01-7.65), in particular those under age 45 year. Segregation analysis showed evidence for multifactorial inheritance in the small percentage (N = 5) of the families. ^