919 resultados para Small-angle scattering.
Resumo:
Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.
Resumo:
In this work we measured X-ray scatter spectra from normal and neoplastic breast tissues using photon energy of 17.44 key and a scattering angle of 90 degrees, in order to study the shape (FWHM) of the Compton peaks. The obtained results for FWHM were discussed in terms of composition and histological characteristics of each tissue type. The statistical analysis shows that the distribution of FWHM of normal adipose breast tissue clearly differs from all other investigated tissues. Comparison between experimental values of FWHM and effective atomic number revealed a strong correlation between them, showing that the FWHM values can be used to provide information about elemental composition of the tissues. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a surface-enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogenchalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbonchalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSIC–type reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
In dieser Arbeit wurde die paritätsverletzende Asymmetrie in derrnquasielastischen Elektron-Deuteron-Streuung bei Q^2=0.23 (GeV/c)^2 mitrneinem longitudinal polarisierten Elektronstrahl bei einer Energie von 315rnMeV bestimmt. Die Messung erfolgte unter Rückwärtswinkeln. Der Detektor überdeckte einen polaren Streuwinkelbereichrnzwischen 140 und 150 deg. Das Target bestand aus flüssigemrnDeuterium in einer Targetzelle mit einer Länge von 23.4 cm. Dierngemessene paritätsverletzende Asymmetrie beträgt A_{PV}^d = (-20.11 pm 0.87_{stat} pm 1.03_{syst}), wobei der erste Fehler den statistischenrnFehlereitrag und der zweite den systematischen Fehlerbeitrag beschreibt. Ausrnder Kombination dieser Messung mit Messungen der paritätsverletzendenrnAsymmetrie in der elastischen Elektron-Proton-Streuung bei gleichem Q^2rnsowohl bei Vorwärts- als auch bei Rückwärtsmessungen können diernVektor-Strange-Formfaktoren sowie der effektive isovektorielle und isoskalarernVektorstrom des Protons, der die elektroschwachen radiativen Anapolkorrekturenrnenthält, bestimmt werden. Diese Arbeit umfasst ausserdem die Bestimmungrnder Asymmetrien bei einem transversal polarisierten Elektronstrahl sowohl beirneinem Proton- als auch einem Deuterontarget unter Rückwärtswinkeln beirnImpulsüberträgen von Q^2=0.10 (GeV/c)^2, Q^2=0.23 (GeV/c)^2rnund Q^2=0.35 (GeV/c)^2. Die im Experiment beobachteten Asymmetrien werdenrnmit theoretischen Berechnungen verglichen, welche den Imaginärteil der Zweiphoton-Austauschamplitude beinhalten.
Resumo:
Understanding and controlling the structural anisotropies of injection-molded polymers is vital for designing products such as cantilever-based sensors. Such micro-cantilevers are considered as cost-effective alternatives to single-crystalline silicon-based sensors. In order to achieve similar sensing characteristics,structure and morphology have to be controlled by means of processing parameters including mold temperature and injection speed. Synchrotron radiation-based scanning small- (SAXS) and wide-angle x-ray scattering techniques were used to quantify crystallinity and anisotropy in polymer micro-cantilevers with micrometer resolution in real space. SAXS measurements confirmed the lamellar nature of the injection-molded semi-crystalline micro-cantilevers. The homogenous cantilever material exhibits a lamellar periodicity increasing with mold temperature but not with injection speed. We demonstrate that micro-cantilevers made of semi-crystalline polymers such as polyvinylidenefluoride, polyoxymethylene, and polypropylene show the expected strong degree of anisotropy along the injection direction.
Resumo:
The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400–1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545–4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel–Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel–Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
Ab initio calculations of Afρ are presented using Mie scattering theory and a Direct Simulation Monte Carlo (DSMC) dust outflow model in support of the Rosetta mission and its target 67P/Churyumov-Gerasimenko (CG). These calculations are performed for particle sizes ranging from 0.010 μm to 1.0 cm. The present status of our knowledge of various differential particle size distributions is reviewed and a variety of particle size distributions is used to explore their effect on Afρ , and the dust mass production View the MathML sourcem˙. A new simple two parameter particle size distribution that curtails the effect of particles below 1 μm is developed. The contributions of all particle sizes are summed to get a resulting overall Afρ. The resultant Afρ could not easily be predicted a priori and turned out to be considerably more constraining regarding the mass loss rate than expected. It is found that a proper calculation of Afρ combined with a good Afρ measurement can constrain the dust/gas ratio in the coma of comets as well as other methods presently available. Phase curves of Afρ versus scattering angle are calculated and produce good agreement with observational data. The major conclusions of our calculations are: – The original definition of A in Afρ is problematical and Afρ should be: qsca(n,λ)×p(g)×f×ρqsca(n,λ)×p(g)×f×ρ. Nevertheless, we keep the present nomenclature of Afρ as a measured quantity for an ensemble of coma particles.– The ratio between Afρ and the dust mass loss rate View the MathML sourcem˙ is dominated by the particle size distribution. – For most particle size distributions presently in use, small particles in the range from 0.10 to 1.0 μm contribute a large fraction to Afρ. – Simplifying the calculation of Afρ by considering only large particles and approximating qsca does not represent a realistic model. Mie scattering theory or if necessary, more complex scattering calculations must be used. – For the commonly used particle size distribution, dn/da ∼ a−3.5 to a−4, there is a natural cut off in Afρ contribution for both small and large particles. – The scattering phase function must be taken into account for each particle size; otherwise the contribution of large particles can be over-estimated by a factor of 10. – Using an imaginary index of refraction of i = 0.10 does not produce sufficient backscattering to match observational data. – A mixture of dark particles with i ⩾ 0.10 and brighter silicate particles with i ⩽ 0.04 matches the observed phase curves quite well. – Using current observational constraints, we find the dust/gas mass-production ratio of CG at 1.3 AU is confined to a range of 0.03–0.5 with a reasonably likely value around 0.1.
Resumo:
Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.
Resumo:
Motivated by the growing interest in unmanned aerial system's applications in indoor and outdoor settings and the standardisation of visual sensors as vehicle payload. This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. It will achieve a minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing-only visual servoing approach. We provide theoretical problem formulation, as well as results from real flight using small quadrotors
Resumo:
Conditions leading to a maximum range for a small, round projectile, fired by hand, are discussed taking into account air drag and the dependence of the initial speed on the mass launched. Both the optimal angle of release for given projectile and initial speed, and the optimal radius for given density (i.e., among a bed of pebbles) are determined; an increase on the height of release is found to always decrease the angle and increase the radius. The influence of the projectile mass on the optimal manner of launching is considered. The validity of the approximations used in the analysis is discussed. Results from very simple measurements show good agreement with theory.