997 resultados para Slug flow
Resumo:
The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.
Resumo:
The instability of Poiseuille flow in a fluid-porous system is investigated. The system consists of a fluid layer overlying porous media and is subjected to a horizontal plane Poiseuille flow. We use Brinkman's model instead of Darcy's law to describe the porous layer. The eigenvalue problem is solved by means of a Chebyshev collocation method. We study the influence of the depth ratio (d) over cap and the Darcy number delta on the instability of the system. We compare systematically the instability of Brinkman's model with the results of Darcy's model. Our results show that no satisfactory agreement between Brinkman's model and Darcy's model is obtained for the instability of a fluid-porous system. We also examine the instability of Darcy's model. A particular comparison with early work is made. We find that a multivalued region may present in the (k, Re) plane, which was neglected in previous work. Here k is the dimensionless wavenumber and Re is the Reynolds number. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000643]
Resumo:
Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.
Resumo:
Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.
Resumo:
A high-order shock-fitting finite difference scheme is studied and used to do direction numerical simulation (DNS) of hypersonic unsteady flow over a blunt cone with fast acoustic waves in the free stream, and the receptivity problem in the blunt cone hypersonic boundary layers is studied. The results show that the acoustic waves are the strongest disturbance in the blunt cone hypersonic boundary layers. The wave modes of disturbance in the blunt cone boundary layers are first, second, and third modes which are generated and propagated downstream along the wall. The results also show that as the frequency decreases, the amplitudes of wave modes of disturbance increase, but there is a critical value. When frequency is over the critial value, the amplitudes decrease. Because of the discontinuity of curvature along the blunt cone body, the maximum amplitudes as a function of frequencies are not monotone.
Resumo:
We study the macroscopic drying patterns of aqueous suspensions of colloidal silica spheres. It was found that convection strength can influence pattern formation. Uniformed films are obtained at weaker convection strength. In addition, we make clear that it is not reasonable to discuss individually the effect of temperature and humidity on the colloid self-assembly. The physical mechanism is that these factors have relationship with the evaporation rate, which can affect the convection strength.
Resumo:
Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
Resumo:
Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.
Resumo:
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.
Resumo:
In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.
Resumo:
Three types of streamline topology in a Karman vortex street flow are shown under the variation of spatial parameters. For the motion of dilute particles in the Karman vortex street flow, there exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for the proportion of particle density to fluid density. Along with the increase of spatial parameters in the flow field, the bifurcation process is suspended, as well as more and more attractors emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in the bifurcation phenomenon.
Resumo:
The gas flows in micro-electro-mechanical systems possess relatively large Knudsen number and usually belong to the slip flow and transitional flow regimes. Recently the lattice Boltzmann method (LBM) was proposed by Nie et al. in Journal of Statistical Physics, vol. 107, pp. 279-289, in 2002 to simulate the microchannel and microcavity flows in the transitional flow regime. The present article intends to test the feasibility of doing so. The results of using the lattice Boltzmann method and the direct simulation Monte Carlo method show good agreement between them for small Kn (Kn = 0.0194), poor agreement for Kn = 0.194, and large deviation for Kn = 0.388 in simulating microchannel flows. This suggests that the present version of the lattice Boltzmann method is not feasible to simulate the transitional channel flow.