988 resultados para Single Taylor Cone Single Jet
Resumo:
An anisotropic elastic-plastic constitutive model for single and polycrystalline metals is proposed. The anisotropic hardening of single crystals, at first, is discussed with the viewpoint of yield surface and a new formulation of it is proposed. Then, a model for the anisotropic hardening of polycrystals is suggested by increasing the number of slip systems and incorporating the interaction of all slip systems. The interaction of grains through grain boundaries is shown to be similar to, and incorporated into, the interaction of slip systems in grains. The numerical predictions and their comparisons with experiments will follow in Part II of this paper.
Resumo:
A discrete slip model which characterizes the inhomogeneity of material properties in ductile single crystals is proposed in this paper. Based on this model rate-dependent finite element investigations are carried out which consider the finite deformation, finite rotation, latent hardening effect and elastic anisotropy. The calculation clearly exhibits the process from microscopic inhomogeneous and localized deformation to necking and the formation of LSBS and reveals several important features of shear localization. For example, the inhomogeneous deformation is influenced by the imperfections and initial non-uniformities of material properties. The inhomogeneous deformation may either induce necking which results in the lattice rotation and leads to geometrical softening, which in turn promotes the formation of CSBS, or induces heavily localized deformation. The microscopic localized deformation eventually develops into the LSBS and results in a failure. These results are in close agreement with experiment. Our calculations also find that the slip lines on the specimen's surface at necking become curved and also find that if the necking occurs before the formation of LSBS, this band must be misoriented from the operative slip systems. In this case, the formation of LSBS must involve non-crystallographic effects. These can also be indirectly confirmed by experiment. All these suggest that our present discrete slip model offers a correct description of the inhomogeneous deformation characterization in ductile crystals.
Resumo:
In this paper, we examine a new basic state of long axisymmetric liquid zone, subjected to axial temperature gradients which induce steady viscous flow driven by thermocapillarity. Axial velocity 1/4S-1/2R(B) of liquid zone connects pulling velocity of single crystal. The stability of liquid zone with pulling velocity 1/4S-1/2R(B) to small axisymmetric disturbance is examined The eigenvalue problems on the stability are derived. A special case (eta = 0) is discussed.
Resumo:
GaAs single crystals have been grown under high gravity conditions, up to 9g0, by a recrystallization method with decreasing temperature. The impurity striations in GaAs grown under high gravity become weak and indistinct with smaller striation spacings. The dislocation density of surcharge-grown GaAs increases with increase of centrifugal force. The cathodoluminescence results also show worse perfection in the GaAs grown at high gravity than at normal earth gravity.
Resumo:
Describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixture. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasmas from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 × 1017 neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 × 1017 neutrons, with an accuracy of ±7%. The actual fusion amplification factor, QDT was about 0.15