994 resultados para Simulate
Resumo:
The high temperature (300~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabricated by low-pressure chemical vapor deposition on Si (100) substrates are investigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage characteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data measured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.
Resumo:
A novel structure of MMI coupler with different background refractive index has been designed. With stronger optical confinement in multimode waveguides, more guided modes are excited to improve imaging quality. Two-dimensional finite difference beam propagation method (2-D FDBPM) was used to simulate this new structure and had proven that its imaging quality, in terms of power uniformity and excess loss, is much better than conventional structure. This structure can be applied in SOI rib waveguides by deep etching method.
Resumo:
A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.
Resumo:
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorption tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
Resumo:
Marine animals and micro-machines often use wiggling motion to generate thrust. The wiggling motion can be modeled by a progressive wave where its wavelength describes the flexibility of wiggling animals. In the present study, an immersed boundary method is used to simulate the flows around the wiggling hydrofoil NACA 65-010 at low Reynolds numbers. One can find from the numerical simulations that the thrust generation is largely determined by the wavelength. The thrust coefficients decrease with the increasing wavelength while the propulsive efficiency reaches a maximum at a certain wavelength due to the viscous effects. The thrust generation is associated with two different flow patterns in the wake: the well-known reversed Karman vortex streets and the vortex dipoles. Both are jet-type flows where the thrust coefficients associated with the reversed Karman vortex streets are larger than the ones associated with the vortex diploes.
Resumo:
The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been developed to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.
Resumo:
In this paper, the mechanism of detonation to quasi-detonation transition was discussed, a new physical model to simulate quasi-detonation was proposed, and one-dimensional theoretical and numerical simulation was conducted. This study firstly demonstrates that the quasi-detonation is of thermal choking. If the conditions of thermal choking are created by some disturbances, the supersonic flow is then unable to accept additional thermal energy, and the CJ detonation becomes the unstable quasi-detonation precipitately. The kinetic energy loss caused by this transition process is firstly considered in this new physical model. The numerical results are in good agreement with previous experimental observations qualitatively, which demonstrates that the quasi-detonation model is physically correct and the study are fundamentally important for detonation and supersonic combustion research.
Resumo:
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (l-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process. Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at l-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at l-g than that at 1-g. The model predictions agreed well with the l-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 lm at ambient temperature 1500 K and oxygen concentration 0.23. 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
To investigate the possible failure modes of the thermal barrier coating (TBC) used to protect the scramjet combustion chamber, the local heating via laser beam irradiation was utilized to simulate the service condition of high thermal flux and high temperature gradient. Firstly, the experimental method and process were described and the typical fracture morphology of the TBC under test were provided. Then, the theoretical and finite element modeling were carried out to study the temperature, deformation and stresses of the specimen when the top ceramic coat was subjected to local heating, and to demonstrate the mechanism on the failure of the TBC. It is revealed that the interface delamination shall appear and ultimately lead to the failure of the TBC under such thermal loading of local quick heating. According to the outcome of this study, the driving force of the interface delamination is influenced greatly by the key structural parameters and performance matching. Moreover, by utilizing the rules of the effects of these parameters on the fracture driving force, there is some possibility for the designer to optimize the performances of the TBC.
Resumo:
A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.
Resumo:
A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.
Resumo:
辐射传输研究是贯穿森林生态系统的纽带,太阳辐射为植物的生长发育提供光合能量、适宜的环境温度以及发育信息。一方面,气候变化使到达地面辐射能的质和量发生变化,影响到植被的生长发育,改变森林的结构,而森林结构的变化又会影响林冠内辐射能的分配和质量,这些变化会进一步影响到林下土壤温度,改变森林根系活性以及土壤营养转化的效率;连锁反应的结果有可能会使森林生态系统的生产力发生变化,改变碳素和氮素源库的调节方向,从而反馈影响地球气候系统。另一方面,人类作为生态系统的成员,必然需要森林生态系统为其提供更多的原材料和更好的生态服务功能,如何实现这些目标,就需要人类适度调整干预方式和频度,达到预期的目的。本文在建立适合于川西亚高山森林的叶面积测量技术、光照辐射模型和土壤温度变化模型的基础上,对川西亚高山地带森林生态系统的辐射传输特征进行了分析,并从森林结构的角度探讨了林分内的辐射分布以及对土壤温度的影响。主要成果如下: 1. 提出了一种照相法测量叶面积的方法。通过对摆放在平面上的叶片照相,利用投影变化,把非正射图像转化为正射图像,然后经过计算机图像处理得到每一片叶片的面积、周长、长度、宽度等信息。这种方法可使用户以任意方向和距离拍摄处于平面上的叶片,能同时处理大量的叶片,适于野外离体或活体叶片测量。叶片面积分辨率可调,分辨率可以与常用的激光叶面积仪相近甚至更高,而且叶片图像可以存档查询。 2. 提出一种模拟林内光照变化的模型。利用林冠半球照片,记录视点以上半球内的林冠构件空间分布,作为林冠子模型;天空辐射子模型采用国际照明委员会(CIE)的标准晴天和阴天以及插值模型。该模型能够模拟林下某一位点处的实时光斑变化。 3. 提出一种土壤温度变化模型。把土壤视为具有容量和阻力性质的结构,利用电阻和电容器件构建土壤能量分布模型。外界太阳辐射能经过植被以及其它一些能量分配器后进入土壤,其中有一部分转化为土壤势能,即土壤温度。土壤温度的变化类似于电池的充放电过程。在已知模型参数的情况下,可以从太阳辐射计算土壤温度的变化。在模型参数未知的情况下,通过输入和输出值推算模型的参数,而模型参数中的时间常数与土壤组成和含水量有关,这样就可以知道土壤水分的变化情况。 4. 从王朗亚高山森林典型样地林分结构的测量获得林地三维结构图、树冠形态、叶面积密度等参数,这些参数输入到Brunner (1998)开发的tRAYci 模型中计算出一段时间内林分任意位置处的光照值。与林下辐射计测量值以及半球照片计算结果的比较,该模型基本上能够满足对林分光环境了解的要求。 5. 从川西亚高山森林生产力的角度,探讨了森林生产力研究的方法以及川西地区的研究历史和成果,发现了其中的一些规律和问题,特别是在叶面积测量上,还没有使用标准的叶面积指数定义。综合来看,川西地区针叶林叶面积指数(单位土地面积上植物冠层总叶面积的一半) 应在4-5 之间。降雨丰富的华西雨屏带是川西地区森林生产力最高的地区,而向西北森林生产力逐渐降低。川西地区云冷杉林森林生产力平均约为600 gDM m-2 a-1,但是根据辐射能计算的潜在生产力则达到1800 gDM m-2 a-1。实际与潜在森林生产力的巨大差异说明其它因子对生产力的影响。 6. 王朗亚高山3 个典型森林林分中,白桦林样地(BF) 林下草本以糙野青茅、牛至、紫菀等喜阳性物种为主,林下透光度较高;冷杉林样地(FF) 林下透光度最低,以喜阴性物种水金凤、蟹甲草、囊瓣芹等为主;而云杉林样地(SF)林分林龄最大,林下透光度介于冷杉林和白桦林之间,草本层仍然以喜阴性物种东方草莓、紫花碎米芥、酢浆草等为主。冷杉林和云杉林的灌木层也很丰富,卫矛属、五加属、茶藨子属、忍冬属植物很丰富,而在白桦林则以栒摘要子属、榛子属、鹅耳枥属等植物为主。藓类植物在云杉林中最丰富,并且形成毯状层,其它两个林分则很稀少。3 个样地林分结构与林下光环境有很强的相关性,从光环境特征可以在一定程度上推测林分的结构。各样地单纯从乔木层材积推算的NPP 排列顺序为BF>FF>SF,与林下辐射透射率和林分年龄的顺序相同,暗示辐射对群落演替过程的驱动作用。 7. 用半球照相法测得BF、FF 和SF 3 个样地的有效叶面积指数以SF 样地最高,BF 最低。如果考虑针叶树叶片在小枝上的丛聚分布,利用北方针叶林的数值进行校正,则SF 样地LAI 显著增加(达到89%),其它样地的LAI 基本不变甚至有所下降。校正后的数值与文献中地面测量的结果较相近,说明在使用半球照相法测量川西亚高山针叶林LAI 时必须加以校正。 8. 在3 个样地中,白桦、岷江冷杉和方枝柏种群为丛聚分布,紫果云杉在FF和SF 样地中基本上为随机分布。3 个物种出现丛聚分布的最短距离约为2m,在最短距离以内则为随机分布。最短距离可能与树冠大小有关,种子传播特征以及对光照的需求状况可能是造成这种分布格局类型的原因。 Radiative transfer plays a key role in forest ecosystems. Solar radiation providesenergy for photosynthesis, appropriate ambient temperature and development informationfor plants. However, quality and quantity of radiation reaching land surface are affected byweather and subsequently influence the growth and development of plants, which in turnchanges the budget of radiation in forest. Soil temperature changes with the variation ofradiation under forest canopy and influences the activity of roots and rate of nutrientturnover. Thus, any changes of radiation will induce chain reactions in the entireecosystem and display in the value of net primary productivity which will possibly shiftthe relationship between carbon source and sink at local or regional scale and feed back tothe global climate system. On the other hand, as a component of ecosystems, humanbeings of course need to demand more materials and better service from ecosystems. Forthese purpose, man must adapt their pattern and frequency of interference to ecosystems.This paper aims to research on the canopy structure, the radiation distribution and theirinfluence on soil temperature from the process of radiative transfer in subalpine forestecosystem of western Sichuan. The main results are: 1 Present a new photogrammetric method for leaf area. The main idea is to convertnon-vertically taken images of planar leaves to orthoimages through projectivetransformation. The resultant images are used to get leaf morphological parametersthrough image processing. This method enables users to take photos at almost anyorientation and distance if only the leaves are placed on same plane, and to processlarge quantity of leaves in a short time, which is suitable for field measurement. Theresolution of leaf area is adjustable to fit for special requirement. 2 A model using hemispherical photos combining with solar tracks and radiation courseis provided to simulate light variation in forest. The hemispherical photos of canopyrecord the real spatial distribution of each element of plants viewed from a point. Skyradiance is simulated with CIE standard clear sky or cloudy sky model. This modelcan be used to simulate real time light variation under canopy. 3 Present a soil temperature model. Soil could be regarded as a body of resistor andcapacitor. Some of the budget of solar radiation in soil body is transformed into soilpotential energy, the soil temperature. Variation of soil temperature is driven by solarradiation, vegetation, soil properties, etc. This model has two parameters, one of whichis time constant and is related to soil water content. The inversed model can be used tosimulate the variation of soil water. 4 By using model tRAYci developed by Brunner (1998), the 3-D distribution of light inthree subalpine forest stands of Wanglang Nature Reserve has been simulated andvalidated with value of radiometers in these stands. This model can basically satisfythe need for understanding light regimes of these stands. 5 Present some principles and questions of NPP (net primary of productivity) researchesin western Sichuan. The standard leaf area index (LAI) defined by Chen and Black(1997) has not been used in this region. Total leaf area and projected leaf area indexare still used in NPP researches which may differ around 1-fold in magnitude. Thestandard LAI which is a half of total leaf area above unit land area should be between4 and 5 for typical subalpine coniferous forest of western Sichuan concluded fromliteratures. The maximum forest NPP occurs in West China rain belt and decreasesnorthwestwards. Average NPP of spruce-fir forest in western Sichuan is about600gDM m-2 a-1, which is below the potential NPP of 1800gDM m-2 a-1 based onmeasured radiation in this region. The significant difference between potential and realNPP suggests that other factors influence the growth of stands. 6 In the three subalpine forest stands of Wanglang Nature Reserve, herbage layer ofAbstractbirch stand (BF) with age of 40 is dominated by heliophytes of Deyeuxia scabrescens,Origanum vulgare, Aster tongoloa etc.. However, both of the other two stands aredominated by shade tolerent species, such as Impatiens noli-tangere, Impatiensdicentra, Cacalia deltophylla and Pternopetalum tanakae etc. in fir stand (FF) withage of 180 and Fragaria orientalis, Cardamine tangutorum and Oxalis corniculata etc.in spruce stand (SF) with age of 330. Shrub species in the latter two stands arerelatively rich, typical dominant genera being Euonymus, Acanthopanax, Ribes andLonicera. Birch stand has relatively sparse shrubs dominated by genera of Cotoneaster,Corylus and Carpinus. Mosses are significant only in spruce stand. The canopystructure controls the light regime of stand, which influence the composition of herblayers beneath the canopy. This light regime-community structure relationship can beused to infer the herb community from canopy structure. The NPP derived from timbervolume of arbor layer of the three stands decreases from BF to SF, which is in thesame order of transmitted total radiation under canopy and age of these stands,suggesting the driving effect of radiation in the succession of community. 7 The highest effective LAI of the three stands obtained by hemispherical photos is inplot SF and lowest in plot BF. After rectification of the clumping effect of leaves onshoot, the real LAI in plot SF increases significantly (89%) and approximate to theaverage LAI of coniferous forest in western Sichuan. Therefore, the LAI obtainedfrom hemispherical photos needs rectification for clumping effect. 8 Spatial distribution pattern for Betula platyphylla, Abies faxoniana and Sabinasaltuaria is clumpy, but Picea purpurea almost random in plot FF and SF. The shortestdistance for clumpy distribution for Betula platyphylla and Sabina saltuaria is 1.5m,and 2m for Abies faxoniana. And random pattern for these trees is exhibited within thisrange which almost coincides with the diameter of crown. Seed dispersalcharacteristics and light requirement may be the reason for different spatial pattern.