952 resultados para Simulações numéricas
Resumo:
The use of wireless sensor and actuator networks in industry has been increasing past few years, bringing multiple benefits compared to wired systems, like network flexibility and manageability. Such networks consists of a possibly large number of small and autonomous sensor and actuator devices with wireless communication capabilities. The data collected by sensors are sent directly or through intermediary nodes along the network to a base station called sink node. The data routing in this environment is an essential matter since it is strictly bounded to the energy efficiency, thus the network lifetime. This work investigates the application of a routing technique based on Reinforcement Learning s Q-Learning algorithm to a wireless sensor network by using an NS-2 simulated environment. Several metrics like energy consumption, data packet delivery rates and delays are used to validate de proposal comparing it with another solutions existing in the literature
Resumo:
This work discusses the design of a transformer used in a plant plasma. This plant, which is being developed in UFRN, will be used in the treatment of waste. It consists basically of a radio frequency power supply and a inductive plasma torch. The transformer operates at the nominal frequency of 400 kHz, with 50 kW, allowing the adaptation of impedance between the power supply and torch. To develop the project, a study was done on the fabrication technologies and physical effects on the frequency of operation. This was followed by the modeling of this transformer. Finally, simulations and tests were conducted to validate the design
Resumo:
The objective of the dissertation was the realization of kinematic modeling of a robotic wheelchair using virtual chains, allowing the wheelchair modeling as a set of robotic manipulator arms forming a cooperative parallel kinematic chain. This document presents the development of a robotic wheelchair to transport people with special needs who overcomes obstacles like a street curb and barriers to accessibility in streets and avenues, including the study of assistive technology, parallel architecture, kinematics modeling, construction and assembly of the prototype robot with the completion of a checklist of problems and barriers to accessibility in several pathways, based on rules, ordinances and existing laws. As a result, simulations were performed on the chair in various states of operation to accomplish the task of going up and down stair with different measures, making the proportional control based on kinematics. To verify the simulated results we developed a prototype robotic wheelchair. This project was developed to provide a better quality of life for people with disabilities
Resumo:
Nowadays there has been a major breakthrough in the aerospace area, with regard to rocket launches to research, experiments, telemetry system, remote sensing, radar system (tracking and monitoring), satellite communications system and insertion of satellites in orbit. This work aims at the application of a circular cylindrical microstrip antenna, ring type, and other cylindrical rectangular in structure of a rocket or missile to obtain telemetry data, operating in the range of 2 to 4 GHz, in S-band. Throughout this was developed just the theoretical analysis of the Transverse transmission line method which is a method of rigorous analysis in spectral domain, for use in rockets and missiles. This analyzes the spread in the direction "ρ" , transverse to dielectric interfaces "z" and "φ", for cylindrical coordinates, thus taking the general equations of electromagnetic fields in function of e [1]. It is worth mentioning that in order to obtain results, simulations and analysis of the structure under study was used HFSS program (High Frequency Structural Simulator) that uses the finite element method. With the theory developed computational resources were used to obtain the numerical calculations, using Fortran Power Station, Scilab and Wolfram Mathematica ®. The prototype was built using, as a substrate, the ULTRALAM ® 3850, of Rogers Corporation, and an aluminum plate as a cylindrical structure used to support. The agreement between the measured and simulated results validate the established processes. Conclusions and suggestions are presented for continuing this work
Resumo:
This work proposes a new technique for phasor estimation applied in microprocessor numerical relays for distance protection of transmission lines, based on the recursive least squares method and called least squares modified random walking. The phasor estimation methods have compromised their performance, mainly due to the DC exponential decaying component present in fault currents. In order to reduce the influence of the DC component, a Morphological Filter (FM) was added to the method of least squares and previously applied to the process of phasor estimation. The presented method is implemented in MATLABr and its performance is compared to one-cycle Fourier technique and conventional phasor estimation, which was also based on least squares algorithm. The methods based on least squares technique used for comparison with the proposed method were: forgetting factor recursive, covariance resetting and random walking. The techniques performance analysis were carried out by means of signals synthetic and signals provided of simulations on the Alternative Transient Program (ATP). When compared to other phasor estimation methods, the proposed method showed satisfactory results, when it comes to the estimation speed, the steady state oscillation and the overshoot. Then, the presented method performance was analyzed by means of variations in the fault parameters (resistance, distance, angle of incidence and type of fault). Through this study, the results did not showed significant variations in method performance. Besides, the apparent impedance trajectory and estimated distance of the fault were analysed, and the presented method showed better results in comparison to one-cycle Fourier algorithm
Resumo:
Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations
Resumo:
No espaço tridimensional, um corpo rígido qualquer pode efetuar translações e ou rotações em relação a cada um de seus eixos. Identificar com precisão o deslocamento realizado por um corpo é fundamental para alguns tipos de sistemas em engenharia. Em sistemas de navegação inercial tradicionais, utilizam-se acelerômetros para reconhecer a aceleração linear e giroscópios para reconhecer a velocidade angular registrada durante o deslocamento. O giroscópio, entretanto, é um dispositivo de custo mais elevado e com alto consumo de energia quando comparado a um acelerômetro. Essa desvantagem deu origem a pesquisas a respeito de sistemas e unidades de medidas inerciais que não utilizam giroscópios. A ideia de utilizar apenas acelerômetros para calcular o movimento linear e angular surgiu no início da década de 60 e vem se desenvolvendo através de modelos que variam no número de sensores, na maneira como estes são organizados e no modelo matemático que é utilizado para derivar o movimento do corpo. Esse trabalho propõe um esquema de configuração para construção de uma unidade de medida inercial que utiliza três acelerômetros triaxiais. Para identificar o deslocamento de um corpo rígido a partir deste esquema, foi utilizado um modelo matemático que utiliza apenas os nove sinais de aceleração extraídos dos três sensores. A proposta sugere que os sensores sejam montados e distribuídos em formato de L . Essa disposição permite a utilização de um único plano do sistema de coordenadas, facilitando assim a instalação e configuração destes dispositivos e possibilitando a implantação dos sensores em uma única placa de circuito integrado. Os resultados encontrados a partir das simulações iniciais demonstram a viabilidade da utilização do esquema de configuração proposto
Resumo:
This work holds the purpose of presenting an auxiliary way of bone density measurement through the attenuation of electromagnetic waves. In order to do so, an arrangement of two microstrip antennas with rectangular configuration has been used, operating in a frequency of 2,49 GHz, and fed by a microstrip line on a substrate of fiberglass with permissiveness of 4.4 and height of 0,9 cm. Simulations were done with silica, bone meal, silica and gypsum blocks samples to prove the variation on the attenuation level of different combinations. Because of their good reproduction of the human beings anomaly aspects, samples of bovine bone were used. They were subjected to weighing, measurement and microwave radiation. The samples had their masses altered after mischaracterization and the process was repeated. The obtained data were inserted in a neural network and its training was proceeded with the best results gathered by correct classification on 100% of the samples. It comes to the conclusion that through only one non-ionizing wave in the 2,49 GHz zone it is possible to evaluate the attenuation level in the bone tissue, and that with the appliance of neural network fed with obtained characteristics in the experiment it is possible to classify a sample as having low or high bone density
Resumo:
The investigation of viability to use containers for Natural Gas Vehicle (NGV) storage, with different geometries of commercial standards, come from necessity to join the ambient, financial and technological benefits offered by the gas combustion, to the convenience of not modify the original proposal of the automobile. The use of these current cylindrical models for storage in the converted vehicles is justified by the excellent behavior that this geometry presents about the imposed tensions for the high pressure that the related reservoirs are submitted. However, recent research directed toward application of adsorbent materials in the natural gas reservoirs had proven a substantial redusction of pressure and, consequently, a relief of the tensions in the reservoirs. However, this study considers alternative geometries for NGV reservoirs, searching the minimization of dimensions and weight, remaining capacity to resist the tensions imposed by the new pressure situation. The proposed reservoirs parameters are calculated through a mathematical study of the internal pressure according to Brazilian standards (NBR) for pressure vessels. Finally simulations of the new geometries behavior are carried through using a commercially avaible Finite Element Method (FEM) software package ALGOR® to verify of the reservoirs efficincy under the gas pressure load
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works
Resumo:
The use of waste heat of energy conversion equipment to produce a cooling effect, consists currently in a very interesting way of efficiency improvement of energy systems. The present research has as intention the theoretical and experimental study of a new intermittent refrigeration system ejector cycle characteristics, with use of waste heat. Initially, was doing a bibliographical survey about the vapor ejector refrigeration system technology. In the following stage was doing a simulation of the corresponding thermodynamic cycle, with preliminarily intention to evaluate the performance of the system for different refrigerants fluids. On the basis of the results of the simulation were selected the refrigerant fluid and developed an experimental group of benches of the refrigeration system considered, where pressure and temperature sensory had been inserted in strategical points of the refrigeration archetype and connected to a computerized data acquisition system for measure the refrigerant fluid properties in the thermodynamic cycle. The test results obtained show good agreement with the literature
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented
Resumo:
The use of the natural gas is growing year after year in the whole world and also in Brazil. It is verified that in the last five years the profile of natural gas consumption reached a great advance and investments had been carried through in this area. In the oil industry, the use of the natural gas for fuel in the drive of engines is usual for a long date. It is also used to put into motion equipment, or still, to generate electric power. Such engines are based on the motor cycle of combustion Otto, who requires a natural gas with well definite specification, conferring characteristic anti-detonating necessary to the equipment performance for projects based on this cycle. In this work, process routes and thermodynamic conditions had been selected and evaluated. Based on simulation assays carried out in commercial simulators the content of the methane index of the effluent gas were evaluated at various ranges of pressure, temperature, flowrate, molecular weight and chemical nature and composition of the absorbent. As final result, it was established a route based on process efficiency, optimized consumption of energy and absorbent. Thereby, it serves as base for the compact equipment conception to be used in locu into the industry for the removal of hydrocarbon from the natural gas produced
Resumo:
Thermal methods made heavy oil production possible in fields where primary recovery failed. Throughout the years steam injection became one of the most important alternatives to increase heavy oil recovery. There are many types of steam injection, and one of them is the cyclic steam injection, which has been used with success in several countries, including Brazil. The process involves three phases: firstly, steam is injected, inside of the producing well; secondly, the well is closed (soak period); and finally, the well is put back into production. These steps constitute one cycle. The cycle is repeated several times until economical production limit is reached. Usually, independent of reservoir type, as the number of cycles increases the cyclic injection turns less efficient. This work aims to analyze rock and reservoir property influence in the cyclic steam injection. The objective was to study the ideal number of cycles and, consequently, process optimization. Simulations were realized using the STARS simulator from the CMG group based in a proposed reservoir model. It was observed that the reservoir thickness was the most important parameter in the process performance, whilst soaking time influence was not significant
Resumo:
This work studies the development, implementation and improvement of a macroscopic model to describe the behavior of the spouted bed dryer with continuous feeding for pastes and suspensions drying. This model is based on the CST model (Freire et al., 2009) and the model of Fernandes (2005), whose theoretical foundation is based on macroscopic mass and heat balances for the three phases involved in the process: gas, liquid and solid. Because this technique is quite relevant, the studies of modeling and simulation of spouted bed drying are essential in the analysis of the process as a whole, because through them it is possible to predict and understand the behavior of the process, which contributes significantly to more efficient project and operation. The development and understanding of the phenomena involved in the drying process can be obtained by comparing the experimental data with those from computer simulations. Such knowledge is critical for choosing properly the process conditions in order to obtain a good drying efficiency. Over the past few years, researches and development of works in the field of pastes and suspensions drying in spouted bed has been gaining ground in Brazil. The Particulate Systems Laboratory at Universidade Federal do Rio Grande do Norte, has been developing several researches and generating a huge collection of experimental data concerning the drying of fruit pulps, vegetables pastes, goat milk and suspensions of agro-industrial residues. From this collection, some data of goat milk and residue from acerola (Malpighia glabra L.) drying were collected. For the first time, these data were used for the development and validation of a model that can describe the behavior of spouted bed dryer. Thus, it was possible to model the dryer and to evaluate the influence of process variables (paste feeding, temperature and flow rate of the drying air) in the drying dynamics. We also performed water evaporation experiments in order to understand and to study the behavior of the dryer wall temperature and the evaporation rate. All these analysis will contribute to future works involving the implementation of control strategies in the pastes and suspensions drying. The results obtained in transient analysis were compared with experimental data indicating that this model well represents the process