956 resultados para Semicondutor diode,
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
Record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser is demonstrated. A maximum output power of 455mW and a side-mode suppression ratio >45dB in the central part of the tuning range are achieved. ©2010 IEEE.
Resumo:
We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.
Resumo:
Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.
Resumo:
Compact CW lasers in the visible spectral region are of great importance for vast number of applications including biophotonics, photomedicine, spectroscopy and confocal microscopy. Currently, commercially available lasers of this spectral region are bulky, expensive and inconvenient in use. Also, there is a lack of diode lasers emitting in the visible spectral range, particularly in the yellow region, where a range of important fluorescent probes are optimally excited. An attractive way to realize a compact yellow laser source is second harmonic generation (SHG) in a periodically poled nonlinear crystal containing a waveguide which allows high-efficient frequency conversion even at moderate power level. In this respect, periodically poled lithium niobate (PPLN) waveguided crystal is one of the best candidates for efficient SHG. In recent years, the progress made with the fabrication of good quality waveguides in PPLN crystals in combination with availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µm and 1.3 µm, allows compact CW laser sources in the visible spectral region to be realized.
Resumo:
Quasi-phase-matching is an important and widelyused technique in nonlinear optics enabling efficient frequency up-conversion. However, since its introduction almost half a century ago, this technique is well developed for near infrared (IR) but is intrinsically limited in spectral tunability in the visible range by the strict conditions set by the spatial modulation which compensates the momentum mismatch imposed by the dispersion. Here, we provide a fundamental generalization of quasi-phase-matching based on the utilization of a significant difference in the effective refractive indices of the high- and low-order modes in multimode waveguides. This concept enables to match the period of poling in a very broad wavelength range and opens up a new avenue for an order-ofmagnitude increase in wavelength range for frequency conversion from a single crystal. Using this approach, we demonstrate an all-room-temperature continuous-wave (CW) second harmonic generation (SHG) with over 60 nm tunability from green to red in a periodically-poled potassium titanyl phosphate (PPKTP) waveguide pumped by a single broadly-tunable quantumdot laser diode. © 2012 by Astro, Ltd.
Resumo:
Orange light with maximum conversion efficiency exceeding 10% and CW output power of 12.04 mW, 10.45 mW and 6.24 mW has been generated at 606, 608, and 611 nm, respectively, from a frequency-doubled InAs/GaAs quantum-dot external-cavity diode laser by use of a periodically-poled KTP waveguides with different cross-sectional areas. The wider waveguide with the cross-sectional area of 4×4 μm demonstrated better results in comparison with the narrower waveguides (3×5 μm and 2×6 μm) which corresponded to lower coupling efficiency. Additional tuning of second harmonic light (between 606 and 614 nm) with similar conversion efficiency was possible by changing the crystal temperature. © 2014 Copyright SPIE.
Resumo:
Mechanisms of a change in the refractive index appearing in an intensely diode-pumped Yb:YAG-laser disk element are studied with the help of polarisation interferometry and dynamic grating testing. It is found that changes in the electronic component of the refractive index arising upon changing the populations of electronic levels of Yb ions (the ground F state and the upper F level of the laser transition) and caused by the difference in the polarisability of these levels are an order of magnitude greater than thermal changes in the refractive index. It is shown that the difference Δp in the polarisability at the probe wavelength of 633 nm is 1.9 × 10 cm and at the laser transition wavelength of 1029 nm is 1.6 × 10 cm. ©2006 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequencydoubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable allroom-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasiLittrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadlytunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.
Resumo:
Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance. © 2014 SPIE.
Resumo:
This letter experimentally demonstrates a visible light communication system using a 350-kHz polymer lightemitting diode operating at a total bit rate of 19 Mb/s with a bit error rate (BER) of 10-6and 20 Mb/s at the forward error correction limit for the first time. This represents a remarkable net data rate gain of ~55 times. The modulation format adopted is ON-OFF keying in conjunction with an artificial neural network classifier implemented as an equalizer. The number of neurons used in the experiment is varied from the set N = {5, 10, 20, 30, 40} with 40 neurons offering the best performance at 19 Mb/s and the BER of 10-6.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.
Resumo:
A simple efficient method for stabilizing a harmonically mode-locked fiber ring laser is proposed. In this method, a linear optical filter and a nonlinear Fabry–Pérot filter in which the refractive index is optical intensity dependent are located in the laser cavity. The linear filter is used to select a fixed lasing wavelength, and the Fabry–Pérot filter introduces a negative all-optical feedback mechanism that is able to suppress pulse-to-pulse amplitude fluctuations in the laser cavity. The scheme was experimentally demonstrated using a fiber Bragg grating as the linear filter and a laser diode biased below threshold as the nonlinear Fabry–Pérot, and stable harmonically mode-locked pulses with a supermode noise suppression ratio >55 dB were obtained.
Resumo:
New polymerisable photoluminescent octahedral rhenium cluster complexes trans-[{Re6Q8}(TBP)4(VB)2] (Q = S or Se; TBP-p-tert-butylpyridine; VB-vinyl benzoate) have been synthesised, characterised and used to construct rhenium cluster-organic polymer hybrid materials. These novel polymer systems are solution-processable and the rhenium clusters retain their photoluminescent properties within the polymer environment. Notably, when the rhenium cluster complexes are incorporated into the matrix of the electroluminescent polymer poly(N-vinylcarbazole), the resultant cluster polymer hybrid combined properties of both components and was used successfully in the construction of a polymer light emitting diode (PLED). These prototype devices are the first PLEDs to incorporate octahedral rhenium clusters and provide the first direct evidence of the electroluminescent properties of rhenium clusters and indeed, to the best of our knowledge, of any member of the family of 24-electron hexanuclear cluster complexes of molybdenum, tungsten or rhenium.