964 resultados para Semi-parametric estimation
Resumo:
The equilibrium solubilities of the solids in supercritical carbon dioxide (SCCO(2)) are considerably enhanced in the presence of cosolvents. The solubilities of m-dinitrobenzene at 308 and 318 K over a pressure range of 9.5-14.5 MPa in the presence of 1.13-2.17 mol% methanol as cosolvent were determined. The average increase in the solubilities in the presence of methanol compared to that obtained in the absence of methanol was around 35%. A new semi-empirical equation in terms of temperature, pressure, density of SCCO(2) and cosolvent composition comprising of 7 adjustable parameters was developed. The proposed model was used to correlate the solubility of the solids in SCCO(2) for the 44 systems available in the literature along with current data. The average absolute relative deviation of the experimental data from the model equation was 3.58%, which is better than the existing models. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.
Resumo:
This paper presents a novel algorithm for compression of single lead Electrocardiogram (ECG) signals. The method is based on Pole-Zero modelling of the Discrete Cosine Transformed (DCT) signal. An extension is proposed to the well known Steiglitz-Hcbride algorithm, to model the higher frequency components of the input signal more accurately. This is achieved by weighting the error function minimized by the algorithm to estimate the model parameters. The data compression achieved by the parametric model is further enhanced by Differential Pulse Code Modulation (DPCM) of the model parameters. The method accomplishes a compression ratio in the range of 1:20 to 1:40, which far exceeds those achieved by most of the current methods.
Resumo:
The problem of on-line recognition and retrieval of relatively weak industrial signals such as partial discharges (PD), buried in excessive noise, has been addressed in this paper. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) due to the overlapping broad band frequency spectrum of PI and PD pulses. Therefore, on-line, onsite, PD measurement is hardly possible in conventional frequency based DSP techniques. The observed PD signal is modeled as a linear combination of systematic and random components employing probabilistic principal component analysis (PPCA) and the pdf of the underlying stochastic process is obtained. The PD/PI pulses are assumed as the mean of the process and modeled instituting non-parametric methods, based on smooth FIR filters, and a maximum aposteriori probability (MAP) procedure employed therein, to estimate the filter coefficients. The classification of the pulses is undertaken using a simple PCA classifier. The methods proposed by the authors were found to be effective in automatic retrieval of PD pulses completely rejecting PI.
Resumo:
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi‐one‐dimensional nonreacting flow in the supersonic nozzle of CO2–N2–H2O and CO2–N2–He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small‐signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed.
Resumo:
A novel procedure to determine the series capacitance of a transformer winding, based on frequency-response measurements, is reported. It is based on converting the measured driving-point impedance magnitude response into a rational function and thereafter exploiting the ratio of a specific coefficient in the numerator and denominator polynomial, which leads to the direct estimation of series capacitance. The theoretical formulations are derived for a mutually coupled ladder-network model, followed by sample calculations. The results obtained are accurate and its feasibility is demonstrated by experiments on model-coil and on actual, single, isolated transformer windings (layered, continuous disc, and interleaved disc). The authors believe that the proposed method is the closest one can get to indirectly measuring series capacitance.
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.
Resumo:
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.
Resumo:
We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.
Resumo:
We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).