994 resultados para Roy, Gabrielle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aurora kinases are essential for chromosomal segregation and cell division and thereby important for maintaining the proper genomic integrity. There are three classes of aurora kinases in humans: A, B, and C. Aurora kinase A is frequently overexpressed in various cancers. The link of the overexpression and tumorigenesis is yet to be understood. By employing virtual screening, we have found that anacardic acid, a pentadecane aliphatic chain containing hydroxylcarboxylic acid, from cashew nut shell liquid could be docked in Aurora kinases A and B. Remarkably, we found that anacardic acid could potently activate the Aurora kinase A mediated phosphorylation of histone H3, but at a similar concentration the activity of aurora kinase B remained unaffected in vitro. Mechanistically, anacardic acid induces the structural changes and also the autophosphorylation of the aurora kinase A to enhance the enzyme activity. This data thus indicate anacardic acid as the first small-molecule activator of Aurora kinase, which could be highly useful for probing the function of hyperactive (overexpressed) Aurora kinase A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A second DNA binding protein from stationary-phase cells of Mycobacterium smegmatis (MsDps2) has been identified from the bacterial genome. It was cloned, expressed and characterised and its crystal structure was determined. The core dodecameric structure of MsDps2 is the same as that of the Dps from the organism described earlier (MsDps1). However, MsDps2 possesses a long N-terminal tail instead of the C-terminal tail in MsDps1. This tail appears to be involved in DNA binding. It is also intimately involved in stabilizing the dodecamer. Partly on account of this factor, MsDps2 assembles straightway into the dodecamer, while MsDps1 does so on incubation after going through an intermediate trimeric stage. The ferroxidation centre is similar in the two proteins, while the pores leading to it exhibit some difference. The mode of sequestration of DNA in the crystalline array of molecules, as evidenced by the crystal structures, appears to be different in MsDps1 and MsDps2, highlighting the variability in the mode of Dps–DNA complexation. A sequence search led to the identification of 300 Dps molecules in bacteria with known genome sequences. Fifty bacteria contain two or more types of Dps molecules each, while 195 contain only one type. Some bacteria, notably some pathogenic ones, do not contain Dps. A sequence signature for Dps could also be derived from the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new ternary iron(III) complex [FeL(dpq)] containing dipyridoquinoxaline (dpq) and 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (H3L) is prepared and structurally characterized by X-ray crystallography. The high-spin complex with a FeN3O3 core shows a quasi-reversible iron(III)/iron(II) redox couple at -0.62 V (vs SCE) in DMF/0.1 M TBAP and a broad visible band at 470 nm in DMF/Tris buffer. Laser photoexcitation of this phenolate (L)-to-iron(III) charge-transfer band at visible wavelengths including red light of >= 630 nm leads to cleavage of supercoiled pUC19 DNA to its nicked circular form via a photoredox pathway forming hydroxyl radicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strategy of translationally fusing the alpha-and beta-subunits of human chorionic gonadotropin (hCG) into a single-chain molecule has been used to produce novel analogs of hCG. Previously we reported expression of a biologically active singlechain analog hCG alpha beta expressed using Pichia expression system. Using the same expression system, another analog, in which the alpha-subunit was replaced with the second beta-subunit, was expressed (hCG beta beta) and purified. hCG beta beta could bind to LH receptor with an affinity three times lower than that of hCG but failed to elicit any response. However, it could inhibit response to the hormone in vitro in a dose- dependent manner. Furthermore, it inhibited response to hCG in vivo indicating the antagonistic nature of the analog. However, it was unable inhibit human FSH binding or response to human FSH, indicating the specificity of the effect. Characterization of hCG alpha beta and hCG beta beta using immunological tools showed alterations in the conformation of some of the epitopes, whereas others were unaltered. Unlike hCG, hCG beta beta interacts with two LH receptor molecules. These studies demonstrate that the presence of the second beta-subunit in the single-chain molecule generated a structure that can be recognized by the receptor. However, due to the absence of alpha-subunit, the molecule is unable to elicit response. The strategy of fusing two beta-subunits of glycoprotein hormones can be used to produce antagonists of these hormones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ball-Larus path-profiling algorithm is an efficient technique to collect acyclic path frequencies of a program. However, longer paths -those extending across loop iterations - describe the runtime behaviour of programs better. We generalize the Ball-Larus profiling algorithm for profiling k-iteration paths - paths that can span up to to k iterations of a loop. We show that it is possible to number suchk-iteration paths perfectly, thus allowing for an efficient profiling algorithm for such longer paths. We also describe a scheme for mixed-mode profiling: profiling different parts of a procedure with different path lengths. Experimental results show that k-iteration profiling is realistic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel superplastic deformation in an intermetallic B2-NiAl nanowire of cross-sectional dimensions of similar to 20 angstrom with failure strain as high as similar to 700% at 700 K temperature is reported. The minimum temperature under which the superplasticity has been observed is around 0.36 T-m, which is much lower than 0.5 T-m (T-m = melting temperature i.e. 1911 K for bulk B2-NiAl). Superplasticity is observed due to transformation from crystalline phase to amorphous phase after yielding of the nanowire. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial bilayered thin films composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb (Mg1/3Nb2/3)O3-0.3(PbTiO3) were fabricated on LaAlO3 (100) substrates by pulsed laser ablation. Ferroelectric, ferromagnetic and magneto-dielectric characterizations performed earlier indicated the possible existence of strain-mediated magneto-electric coupling in these biferroic heterostructures. In order to investigate their true remnant polarization characteristics, usable in devices, room-temperature polarization versus electric field, positive-up negative-down (PUND) pulse polarization studies and remnant hysteresis measurements were carried out. The PUND and remnant hysteresis measurements revealed the significant contribution of the non-remnant component in the observed polarization hysteresis response of these heterostructures. (C) 2010 Published by Elsevier Ltd