938 resultados para Rodrigues, J.C. (José Carlos), 1844-1922.
Resumo:
We investigate the spin Hall conductivity sigma (xy) (z) of a clean 2D electron gas formed in a two-subband well. We determine sigma (xy) (z) as arising from the inter-subband induced spin-orbit (SO) coupling eta (Calsaverini et al., Phys. Rev. B 78:155313, 2008) via a linear-response approach due to Rashba. By self-consistently calculating eta for realistic wells, we find that sigma (xy) (z) presents a non-monotonic (and non-universal) behavior and a sign change as the Fermi energy varies between the subband edges. Although our sigma (xy) (z) is very small (i.e., a parts per thousand(a)`` e/4 pi aEuro(3)), it is non-zero as opposed to linear-in-k SO models.
Resumo:
We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.
Resumo:
Spin polarization is a key characteristic in developing spintronic devices. Diluted magnetic heterostructures (DMH), where subsequent layers of conventional and diluted magnetic semiconductors (DMS) are alternate, are one of the possible ways to obtain it. Si being the basis of modern electronics, Si or other group-IV DMH can be used to build spintronic devices directly integrated with conventional ones. In this work we study the physical properties and the spin-polarization effects of p-type DMH based in group-IV semiconductors (Si, Ge, SiGe, and SiC), by performing self-consistent (k) over right arrow . (p) over right arrow calculations in the local spin density approximation. We show that high spin polarization can be maintained in these structures below certain values of the carrier concentrations. Full spin polarization is attained in the low carrier concentration regime for carrier concentrations in the DMS layer up to similar to 2.0 x 10(19) cm(-3) for Si and up to similar to 6.0 x 10(19) cm(-3) for SiC. Partial, but still important spin polarization can be achieved for all studied group-IV DMH, with the exception of Ge for carrier concentrations up to 6.0 x 10(19) cm(-3). The role played by the effective masses and the energy splitting of the spin-orbit split-off hole bands is also discussed throughout the paper.
Resumo:
The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTR At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The persistent luminescence materials, barium aluminates doped with Eu(2+) and Dy(3+) (BaAl(2)O(4): Eu(2+),Dy(3+)), were prepared with the combustion synthesis at temperatures between 400 and 600 degrees C as well as with the solid state reaction at 1500 degrees C. The concentrations of Eu(2+)/Dy(3+) (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
New lanthanide complexes with benzeneseleninic (ABSe) and 4-chloro-benzeneseleninic (ABSeCl) acids have been synthesized and characterized by elemental analysis, infrared and UV-visible spectroscopies. The emission spectra of the trivalent europium complexes presented the typical electronic (5)D(0) -> (7)F(j) transitions of the ion (J = 0-4). The ground-state geometries of the europium complexes have been calculated by using the Sparkle/AM1 model. From these results, the 4f-4f intensity parameters and energies of the ligand singlet and triplet excited states have been obtained. The lower emission quantum yield for the [Eu(ABSe)(3)(H(2)O)(2)](H(2)O)(2) compound, as compared to the [Eu(Al(3)SeCl)(3)(H(2)O)(2)] one, can be associated to the higher numbers of water molecules, in the first and second coordination spheres, that contribute to the luminescence quenching. The [Eu(Al(3)Se)(3)(H(2)O)(2)](H(2)O)(2) complex presents an intermediate state whose energy difference with respect to the first excited singlet state is resonant with three phonons from the water molecules, favouring a multiphonon relaxation process from the singlet state followed by a fast internal conversion process; this effect is less pronounced in the complex with the ABSeCl ligand. The luminescence decay curves of the gadolinium complexes indicate that the level responsible for the intramolecular energy transfer process has a triplet character for both compounds. The nephelauxetic effect in these compounds was investigated under the light of a recently proposed covalency scale based on the concept of overlap polarizability of the chemical bond. (C) 2009 Elsevier B.V. All rights reserved.
Optical energy storage properties of Sr(2)MgSi(2)O(7):Eu(2+),R(3+) persistent luminescence materials
Resumo:
The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr(2)MgSi(2)O(7):Eu(2+),R(3+) material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 A degrees C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R(3+) co-dopants.
Resumo:
Polycrystalline Eu(2+) and Dy(3+) doped barium aluminate materials, BaAl(2)O(4):Eu(2+),Dy(3+), were prepared with solid state reactions at temperatures between 700 and 1500 degrees C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 degrees C follow the formation of BaAl(2)O(4) composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu(2+) band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu(2+)) and co-clopant (Dy(3+)) concentrations affect the crystallinity and luminescence properties of the materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The products formed from the reaction of emeraldine base polyaniline (EB-PANI) with Fe(III) ions in N-methyl-pyrrolidone (NMP), dimethylacetamide (DMA), dimethylformamide (DMF) and m-cresol media have been investigated using UV-VIS-NIR and resonance Raman (lambda(0) = 632.8 and 1064 nm) spectroscopies. Through these results it was verified that the different PANI forms in solution can be formed by the suitable choice of the solvent. The behavior of Fe(III)/EB-PANI in different solvents was rationalized in terms of the interactions among Fe(III) ions, EB-PANI and solvent. In basic NMP, DMA and DMF media, the reaction of Fe(III) with EB-PANI yields EB-PANI doping giving ES-PANI and/or the EB-PANI oxidation to PB-PANI. The formation of ES-PANI is favored in DMF while PB-PANI is formed in a greater extension in NMP and DMA. In acidic m-cresol, only ES-PANI is produced in Fe(III)/EB-PANI solutions indicating the important role played by the solvent in the nature of the product. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In order to evaluate the interactions between Au/Cu atoms and clean Si(l 11) surface, we used synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Optimized geometries and energies on different adsorption sites indicate that the binding energies at different adsorption sites are high, suggesting a strong interaction between metal atom and silicon surface. The Au atom showed higher interaction than Cu atom. The theoretical and experimental data showed good agreement. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
An ultrasound-assisted synthesis of functionalized vinylic chlorides is described by palladium-catalyzed cross-coupling reaction of potassium aryltrifluoroborate salts and (Z)-2-chloro vinylic tellurides. This procedure offers easy access to vinylic chlorides architecture that contains sterically demanding groups in good yields. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.
Resumo:
The enzyme dihydroorotate dehydrogenase (DHODH) has been suggested as a promising target for the design of trypanocidal agents. We report here the discovery of novel inhibitors of Trypanosoma cruzi DHODH identified by a combination of virtual screening and ITC methods. Monitoring of the enzymatic reaction in the presence of selected ligands together with structural information obtained from X-ray crystallography analysis have allowed the identification and validation of a novel site of interaction (S2 site). This has provided important structural insights for the rational design of T cruzi and Leishmania major DHODH inhibitors. The most potent compound (1) in the investigated series inhibits TcDHODH enzyme with K(i)(app) value of 19.28 mu M and possesses a ligand efficiency of 0.54 kcal mol(-1) per non-H atom. The compounds described in this work are promising hits for further development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
This thesis analyzes the current state of the language immersion program in Catalonia after its implementation 30 years ago, and after the immigration wave of the last decade. The language immersion is a method of teaching a second language using a language of instruction different than the students’ mother tongue. The Catalan authorities use this as a method for preserving Catalan in the society.The aim of this study is to examine the use of Catalan at school and outside of school by students who have followed the language immersion program. Language attitudes play an important role for the maintenance of a minority language, as Catalan. Therefore, in this study, the informants’ attitudes towards Catalan have also been measured. The method applied is a quantitative method where the informants have answered a written questionnaire. The results show a high level of knowledge of Catalan and its frequent use in the classroom. In contrast, outside of school the Castilian language is more often used. The informants seem to have a positive attitude towards Catalan.The conclusion is that the language immersion works satisfactory in a school context but often fails outside of school.