966 resultados para Respiratory inductive plethysmography
Resumo:
The respiratory effects of dexmedetomidine were retrospectively examined in 33 postsurgical patients involved in a randomised, placebo-controlled trial after extubation in the intensive care unit (ICU). Morphine requirements were reduced by over 50% in patients receiving dexmedetomidine. There were no differences in respiratory rates, oxygen saturations, arterial pH and arterial partial carbon dioxide tension (PaCO2) between the groups. Interestingly the arterial partial oxygen tension (PaO2) : fractional inspired oxygen (FIO2) ratios were statistically significantly higher in the dexmedetomidine group. Dexmedetomidine provides important postsurgical analgesia and appears to have no clinically important adverse effects on respiration in the surgical patient who requires intensive care.
Resumo:
Activation of the phagocyte NADPH oxidase complex requires the assembly of the cytosolic factors p47PHOX, p67PHOX, p40PHOX, and Rac1 or Rac2, with the membrane-bound cytochrome b558. Whereas the interaction of p47PHOX with cytochrome b558 is well established, an interaction between p67PHOX and cytochrome b558 has never been investigated. We report here a direct interaction between p67PHOX and cytochrome b558. First, labeled p67PHOX recognizes a 91-kDa band in specific granules from a normal patient but not from a cytochrome b558-deficient patient. Second, p67PHOX binds to cytochrome b558 that has been bound to nitrocellulose. Third, GTP-p67PHOX bound to glutathione agarose is able to pull down cytochrome b558. Rac1-GTP or Rac1-GDP increased the binding of p67PHOX to cytochrome b558, suggesting that at least one of the oxidase-related functions of Rac1 is to promote the interaction between p67PHOX and cytochrome b558.
Resumo:
Bacteriophage lytic enzymes quickly destroy the cell wall of the host bacterium to release progeny phage. Because such lytic enzymes specifically kill the species in which they were produced, they may represent an effective way to control pathogenic bacteria without disturbing normal microflora. In this report, we studied a murein hydrolase from the streptococcal bacteriophage C1 termed lysin. This enzyme is specific for groups A, C, and E streptococci, with little or no activity toward several oral streptococci or other commensal organisms tested. Using purified lysin in vitro, we show that 1,000 units (10 ng) of enzyme is sufficient to sterilize a culture of ≈107 group A streptococci within 5 seconds. When a single dose of lysin (250 units) is first added to the oral cavity of mice, followed by 107 live group A streptococci, it provides protection from colonization (28.5% infected, n = 21) compared with controls without lysin (70.5% infected, n = 17) (P < 0.03). Furthermore, when lysin (500 units) was given orally to 9 heavily colonized mice, no detectable streptococci were observed 2 h after lysin treatment. In all, these studies show that lysin represents a unique murein hydrolase that has a rapid lethal effect both in vitro and in vivo on group A streptococci, without affecting other indigenous microorganisms analyzed. This general approach may be used to either eliminate or reduce streptococci from the upper respiratory mucosal epithelium of either carriers or infected individuals, thus reducing associated disease.
Resumo:
In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.
Resumo:
Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.
Resumo:
To clarify the molecular basis of the photoperiodic induction of flowering in the short-day plant Pharbitis nil cv Violet, we examined changes in the level of mRNA in cotyledons during the flower-inductive photoperiod using the technique of differential display by the polymerase chain reaction. A transcript that accumulated during the inductive dark period was identified and a cDNA corresponding to the transcript, designated PnC401 (P. nil C401), was isolated. RNA-blot hybridization verified that levels of PnC401 mRNA fluctuated with a circadian rhythm, with maxima between 12 and 16 h after the beginning of the dark period) and minima of approximately 0. This oscillation continued even during an extended dark period but was damped under continuous light. Accumulation of PnC401 mRNA was reduced by a brief exposure to red light at the 8th h of the dark period (night-break treatment) or by exposure to far-red light at the end of the light period (end-of-day far-red treatment). These results suggest that fluctuations in levels of PnC401 mRNA are regulated by phytochrome(s) and a circadian clock and that they are associated with photoperiodic events that include induction of flowering.