914 resultados para Residual autocorrelation and autocovariance matrices
Resumo:
Residual structure in the denatured state of a protein may contain clues about the early events in folding. We have simulated by molecular dynamics the denatured state of barnase, which has been studied by NMR spectroscopy. An ensemble of 104 structures was generated after 2 ns of unfolding and following for a further 2 ns. The ensemble was heterogeneous, but there was nonrandom, residual structure with persistent interactions. Helical structure in the C-terminal portion of helix α1 (residues 13–17) and in helix α2 as well as a turn and nonnative hydrophobic clustering between β3 and β4 were observed, consistent with NMR data. In addition, there were tertiary contacts between residues in α1 and the C-terminal portion of the β-sheet. The simulated structures allow the rudimentary NMR data to be fleshed out. The consistency between simulation and experiment inspires confidence in the methods. A description of the folding pathway of barnase from the denatured to the native state can be constructed by combining the simulation with experimental data from φ value analysis and NMR.
Resumo:
The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.
Resumo:
The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important influence of the nano-biocomposites morphology on their final properties. In particular, the rheological and viscoelastic characteristics of these systems are very sensitive to the dispersion level of the nanofiller, but it is possible to assess that the material processing behaviour is not compromised by the presence of these nano-reinforcements. In general, both nanofillers had a positive influence in the materials final properties. Mechanical performance shows improvements in terms of elastic modulus, without important limitations in terms of ductility. Thermal properties are improved in terms of residual mass after degradation and low improvements are also observed in terms of oxygen barrier properties.
Resumo:
Mode of access: Internet.
Resumo:
Literature cited: p. 24-26.
Resumo:
Caption title.
Resumo:
Wurst is a protein threading program with an emphasis on high quality sequence to structure alignments (http://www.zbh.uni-hamburg.de/wurst). Submitted sequences are aligned to each of about 3000 templates with a conventional dynamic programming algorithm, but using a score function with sophisticated structure and sequence terms. The structure terms are a log-odds probability of sequence to structure fragment compatibility, obtained from a Bayesian classification procedure. A simplex optimization was used to optimize the sequence-based terms for the goal of alignment and model quality and to balance the sequence and structural contributions against each other. Both sequence and structural terms operate with sequence profiles.
Resumo:
We consider the problems of computing the power and exponential moments EXs and EetX of square Gaussian random matrices X=A+BWC for positive integer s and real t, where W is a standard normal random vector and A, B, C are appropriately dimensioned constant matrices. We solve the problems by a matrix product scalarization technique and interpret the solutions in system-theoretic terms. The results of the paper are applicable to Bayesian prediction in multivariate autoregressive time series and mean-reverting diffusion processes.
Resumo:
Investigations were undertaken to study the role of the protein cross-linking enzyme tissue transglutaminase in changes associated with the extracellular matrix and in the cell death of human dermal fibroblasts following exposure to a solarium ultraviolet A source consisting of 98.8% ultraviolet A and 1.2% ultraviolet B. Exposure to nonlethal ultraviolet doses of 60 to 120 kJ per m2 resulted in increased tissue transglutaminase activity when measured either in cell homogenates, "in situ" by incorporation of fluorescein-cadaverine into the extracellular matrix or by changes in the epsilon(gamma-glutamyl) lysine cross-link. This increase in enzyme activity did not require de novo protein synthesis. Incorporation of fluorescein-cadaverine into matrix proteins was accompanied by the cross-linking of fibronectin and tissue transglutaminase into nonreducible high molecular weight polymers. Addition of exogenous tissue transglutaminase to cultured cells mimicking extensive cell leakage of the enzyme resulted in increased extracellular matrix deposition and a decreased rate of matrix turnover. Exposure of cells to 180 kJ per m2 resulted in 40% to 50% cell death with dying cells showing extensive tissue transglutaminase cross-linking of intracellular proteins and increased cross-linking of the surrounding extracellular matrix, the latter probably occurring as a result of cell leakage of tissue transglutaminase. These cells demonstrated negligible caspase activation and DNA fragmentation but maintained their cell morphology. In contrast, exposure of cells to 240 kJ per m2 resulted in increased cell death with caspase activation and some DNA fragmentation. These cells could be partially rescued from death by addition of caspase inhibitors. These data suggest that changes in cross-linking both in the intracellular and extracellular compartments elicited by tissue transglutaminase following exposure to ultraviolet provides a rapid tissue stabilization process following damage, but as such may be a contributory factor to the scarring process that results.