994 resultados para Rectal neoplasm
Resumo:
Preoperative imaging for resection of chest wall malignancies is generally performed by computed tomography (CT). We evaluated the role of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in planning full-thickness chest wall resections for malignancies. We retrospectively included 18 consecutive patients operated from 2004 to 2006 at our institution. Tumor extent was measured by CT and PET, using the two largest perpendicular tumor extensions in the chest wall plane to compute the tumor surface assuming an elliptical shape. Imaging measurements were compared to histopathology assessment of tumor borders. CT assessment consistently overestimated the tumor size as compared to PET (+64% vs. +1%, P<0.001). Moreover, PET was significantly better than CT at defining the size of lesions >24 cm(2) corresponding to a mean diameter >5.5 cm or an ellipse of >4 cm x 7.6 cm (positive predictive value 80% vs. 44% and specificity 93% vs. 64%, respectively). Metabolic PET imaging was superior to CT for defining the extent of chest wall tumors, particularly for tumors with a diameter >5.5 cm. PET can complement CT in planning full-thickness chest wall resection for malignancies, but its true value remains to be determined in larger, prospective studies.
Resumo:
HLA-A2-restricted cytolytic T cells specific for the immunodominant human tumor Ag Melan-A(MART-1) can kill most HLA-matched melanoma cells, through recognition of two naturally occurring antigenic variants, i.e., Melan-A nonamer AAGIGILTV and decamer EAAGIGILTV peptides. Several previous studies have suggested a high degree of TCR cross-reactivity to the two peptides. In this study, we describe for the first time that some T cell clones are exclusively nonamer specific, because they are not labeled by A2/decamer-tetramers and do not recognize the decamer when presented endogenously. Functional assays with peptides gave misleading results, possibly because decamers were cleaved by exopeptidases. Interestingly, nonapeptide-specific T cell clones were rarely Valpha2.1 positive (only 1 of 19 clones), in contrast to the known strong bias for Valpha2.1-positive TCRs found in decamer-specific clones (59 of 69 clones). Molecular modeling revealed that nonapeptide-specific TCRs formed unfavorable interactions with the decapeptide, whereas decapeptide-specific TCRs productively created a hydrogen bond between CDR1alpha and glutamic acid (E) of the decapeptide. Ex vivo analysis of T cells from melanoma metastases demonstrated that both nonamer and decamer-specific T cells were enriched to substantial frequencies in vivo, and representative clones showed efficient tumor cell recognition and killing. We conclude that the two peptides should be regarded as distinct epitopes when analyzing tumor immunity and developing immunotherapy against melanoma.
Resumo:
Emerging evidence indicates that angiogenesis and immunosuppression frequently occur simultaneously in response to diverse stimuli. Here, we describe a fundamental biological programme that involves the activation of both angiogenesis and immunosuppressive responses, often through the same cell types or soluble factors. We suggest that the initiation of these responses is part of a physiological and homeostatic tissue repair programme, which can be co-opted in pathological states, notably by tumours. This view can help to devise new cancer therapies and may have implications for aseptic tissue injury, pathogen-mediated tissue destruction, chronic inflammation and even reproduction.
Resumo:
Tumour immunologists strive to develop efficient tumour vaccination and adoptive transfer therapies that enlarge the pool of tumour-specific and -reactive effector T-cells in vivo. To assess the efficiency of the various strategies, ex vivo assays are needed for the longitudinal monitoring of the patient's specific immune responses providing both quantitative and qualitative data. In particular, since tumour cell cytolysis is the end goal of tumour immunotherapy, routine immune monitoring protocols need to include a read-out for the cytolytic efficiency of Ag-specific cells. We propose to combine current immune monitoring techniques in a highly sensitive and reproducible multi-parametric flow cytometry based cytotoxicity assay that has been optimised to require low numbers of Ag-specific T-cells. The possibility of re-analysing those T-cells that have undergone lytic activity is illustrated by the concomitant detection of CD107a upregulation on the surface of degranulated T-cells. To date, the LiveCount Assay provides the only possibility of assessing the ex vivo cytolytic activity of low-frequency Ag-specific cytotoxic T-lymphocytes from patient material.
Resumo:
Glioblastomas are the most malignant gliomas with median survival times of only 15 months despite modern therapies. All standard treatments are palliative. Pathogenetic factors are diverse, hence, stratified treatment plans are warranted considering the molecular heterogeneity among these tumors. However, most patients are treated with "one fits all" standard therapies, many of them with minor response and major toxicities. The integration of clinical and molecular information, now becoming available using new tools such as gene arrays, proteomics, and molecular imaging, will take us to an era where more targeted and effective treatments may be implemented. A first step towards the design of such therapies is the identification of relevant molecular mechanisms driving the aggressive biological behavior of glioblastoma. The accumulation of diverse aberrations in regulatory processes enables tumor cells to bypass the effects of most classical therapies available. Molecular alterations underlying such mechanisms comprise aberrations on the genetic level, such as point mutations of distinct genes, or amplifications and deletions, while others result from epigenetic modifications such as aberrant methylation of CpG islands in the regulatory sequence of genes. Epigenetic silencing of the MGMT gene encoding a DNA repair enzyme was recently found to be of predictive value in a randomized clinical trial for newly diagnosed glioblastoma testing the addition of the alkylating agent temozolomide to standard radiotherapy. Determination of the methylation status of the MGMT promoter may become the first molecular diagnostic tool to identify patients most likely to respond that will allow individually tailored therapy in glioblastoma. To date, the test for the MGMT-methylation status is the only tool available that may direct the choice for alkylating agents in glioblastoma patients, but many others may hopefully become part of an arsenal to stratify patients to respective targeted therapies within the next years.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.
Resumo:
BACKGROUND: Stage IIIB non-small-cell lung cancer (NSCLC) is usually thought to be unresectable, and is managed with chemotherapy with or without radiotherapy. However, selected patients might benefit from surgical resection after neoadjuvant chemotherapy and radiotherapy. The aim of this multicentre, phase II trial was to assess the efficacy and toxicity of a neoadjuvant chemotherapy and radiotherapy followed by surgery in patients with technically operable stage IIIB NSCLC. METHODS: Between September, 2001, and May, 2006, patients with pathologically proven and technically resectable stage IIIB NSCLC were sequentially treated with three cycles of neoadjuvant chemotherapy (cisplatin with docetaxel), immediately followed by accelerated concomitant boost radiotherapy (44 Gy in 22 fractions) and definitive surgery. The primary endpoint was event-free survival at 12 months. Efficacy analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00030810. FINDINGS: 46 patients were enrolled, with a median age of 60 years (range 28-70). 13 (28%) patients had N3 disease, 36 (78%) had T4 disease. All patients received chemotherapy; 35 (76%) patients received radiotherapy. The main toxicities during chemotherapy were neutropenia (25 patients [54%] at grade 3 or 4) and febrile neutropenia (nine [20%]); the main toxicity after radiotherapy was oesophagitis (ten patients [29%]; nine grade 2, one grade 3). 35 patients (76%) underwent surgery, with pneumonectomy in 17 patients. A complete (R0) resection was achieved in 27 patients. Peri-operative complications occurred in 14 patients, including two deaths (30-day mortality 5.7%). Seven patients required a second surgical intervention. Pathological mediastinal downstaging was seen in 11 of the 28 patients who had lymph-node involvement at enrolment, a complete pathological response was seen in six patients. Event-free survival at 12 months was 54% (95% CI 39-67). After a median follow-up of 58 months, the median overall survival was 29 months (95% CI 16.1-NA), with survival at 1, 3, and 5 years of 67% (95% CI 52-79), 47% (32-61), and 40% (24-55). INTERPRETATION: A treatment strategy of neoadjuvant chemotherapy and radiotherapy followed by surgery is feasible in selected patients. Toxicity is considerable, but manageable. Survival compares favourably with historical results of combined treatment for less advanced stage IIIA disease. FUNDING: Swiss Group for Clinical Cancer Research (SAKK) and an unrestricted educational grant by Sanofi-Aventis (Switzerland).
Resumo:
A large variety of cancer vaccines have undergone extensive testing in early-phase clinical trials. A limited number have also been tested in randomized phase II clinical trials. Encouraging trends toward increased survival in the vaccine arms have been recently observed for 2 vaccine candidates in patients with non-small-cell lung cancer. These have provided the impetus for the initiation of phase III trials in large groups of patients with lung cancer. These vaccines target 2 antigens widely expressed in lung carcinomas: melanoma-associated antigen 3, a cancer testis antigen; and mucin 1, an antigen overexpressed in a largely deglycosylated form in advanced tumors. Therapeutic cancer vaccines aim at inducing strong CD8 and CD4 T-cell responses. The majority of vaccines recently tested in phase I clinical trials show efficacy in terms of induction of specific tumor antigen immunity. However, clinical efficacy remains to be determined but appears limited. Efforts are thus aimed at understanding the basis for this apparent lack of effect on tumors. Two major factors are involved. On one hand, current vaccines are suboptimal. Strong adjuvant agents and appropriate tumor antigens are needed. Moreover, dose, route, and schedule also need optimization. On the other hand, it is now clear that large tumors often present a tolerogenic microenvironment that hampers effective antitumor immunity. The partial understanding of the molecular pathways leading to functional inactivation of T cells at tumor sites has provided new targets for intervention. In this regard, blockade of cytotoxic T-lymphocyte antigen-4 and programmed death-1 with humanized monoclonal antibodies has reached the clinical testing stage. In the future, more potent cancer vaccines will benefit from intense research in antigen discovery and adjuvant agents. Furthermore, it is likely that vaccines need to be combined with compounds that reverse major tolerogenic pathways that are constitutively active at the tumor site. Developing these combined approaches to vaccination in cancer promises new, exciting findings and, at the same time, poses important challenges to academic research institutions and the pharmaceutical industry.
Resumo:
The reactivity spectrum of three monoclonal antibodies (Mabs) to human malignant glioma, five Mabs to melanomas and one Mab anti-HLA-DR was investigated by an indirect antibody binding radioimmunoassay on a panel of cells derived from 60 glioma lines, including 47 malignant astrocytomas, 11 low-grade astrocytomas and two malignant ependymomas as well on cells from 12 melanoma, three neuroblastoma, three medulloblastoma, two schwannoma, two retinoblastoma, two choroïd plexus papilloma, ten meningioma and 12 unrelated tumor lines. The anti-glioma Mabs BF7 and GE2 reacted preferentially with gliomas, while the anti-glioma Mab CG12 reacted with gliomas, melanomas, neuroblastomas and medulloblastomas. The five anti-melanoma Mabs reacted with gliomas, neuroblastomas and medulloblastomas. The anti-HLA-DR Mab D1-12 reacted with gliomas, melanomas and some meningiomas. On the basis of the data presented, we describe three different antigenic systems; the first one is glioma-associated, the second one is related to differentiation antigens expressed on cells derived from the neuroectoderm and the third is represented by HLA-DR antigens which are expressed not only on B-lymphoblastoid cells but also on melanomas and gliomas.
Resumo:
The activation of T cells is vital to the successful elimination of pathogens, but can also have a deleterious role in autoimmunity and transplant rejection. Various signalling pathways are triggered by the T-cell receptor; these have key roles in the control of the T-cell response and represent interesting targets for therapeutic immunomodulation. Recent findings define MALT1 (mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1) as a protein with proteolytic activity that controls T-cell activation by regulating key molecules in T-cell-receptor-induced signalling pathways
Resumo:
BACKGROUND AND STUDY AIMS: To summarize the published literature on assessment of appropriateness of colonoscopy for the investigation of functional bowel symptoms, and report appropriateness criteria developed by an expert panel, the 2008 European Panel on the Appropriateness of Gastrointestinal Endoscopy, EPAGE II. METHODS: A systematic search of guidelines, systematic reviews and primary studies regarding the evaluation and management of functional bowel symptoms was performed. The RAND/UCLA Appropriateness Method was applied to develop appropriateness criteria for colonoscopy for these conditions. RESULTS: Much of the evidence for use of colonoscopy in evaluation of chronic abdominal pain, and/or constipation and/or abdominal bloating is modest. Major limitations include small numbers of patients and lack of adequate characterization of these patients. Large community-based follow-up studies are needed to enable better definition of the natural history of patients with functional bowel disorders. Guidelines stress that alarm features ("red flags"), such as rectal bleeding, anemia, weight loss, nocturnal symptoms, family history of colon cancer, age of onset > 50 years, and recent onset of symptoms should all lead to careful evaluation before a diagnosis of functional bowel disorder is made. EPAGE II assessed these symptoms by means of 12 clinical scenarios, rating colonoscopy as appropriate, uncertain and inappropriate in 42 % (5/12), 25 % (3/12), and 33 % (4/12) of these, respectively. CONCLUSIONS: Evidence to support the use of colonoscopy in the evaluation of patients with functional bowel disorders and no alarm features is lacking. These patients have no increased risk of colon cancer and thus advice on screening for this is not different from that for the general population. EPAGE II criteria, available online (http://www.epage.ch), consider colonoscopy appropriate in patients of > 50 years with chronic or new-onset bowel disturbances, but not in patients with isolated chronic abdominal pain.
Resumo:
The substantial recurrence rate of colorectal cancer following potentially curative resection has fuelled the search for effective adjuvant therapy. Previous trials using 5-fluorouracil (5-FU) as a single agent or in combination chemotherapy regimens have not demonstrated meaningful benefits, an impression reflected in the results of a meta-analysis encompassing large patient numbers. Newer developments utilizing intraportal chemotherapy and the combination of 5-FU and levamisole have resulted in lower recurrence rates and improved survival in patients with colon cancer. In advanced disease, the biochemical modulation of 5-FU by Leucovorin has been shown to prolong survival in some studies. Combined chemotherapy and radiotherapy or chemotherapy alone have showed promising results in rectal cancer. These developments have now been incorporated into ongoing trials.
Resumo:
Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma.
Resumo:
Natural killer (NK) receptor signaling can lead to reduced cytotoxicity by NK cells and cytolytic T lymphocytes (CTLs) in vitro. Whether T cells are inhibited in vivo remains unknown, since peptide antigen-specific CD8(+) T cells have so far not been found to express NK receptors in vivo. Here we demonstrate that melanoma patients may bear tumor-specific CTLs expressing NK receptors. The lysis of melanoma cells by patient-derived CTLs was inhibited by the NK receptor CD94/NKG2A. Thus, tumor-specific CTL activity may be decreased through NK receptor triggering in vivo.