1000 resultados para REAL
Resumo:
A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C. parvum oocyst (primary antibody) and oocysts, followed by the binding step of the unbound primary antibody onto the secondary antibody surface. It enhanced not only the immunoreaction yield of the oocysts by batch reaction but also the accessibility of analytes to the chip surface by antibody–antibody interaction. Furthermore, the use of optimum concentration of the primary antibody maximized its binding response on the chip. An inversely linear calibration curve for the oocyst concentration versus SPR signal was obtained in the range of 1×106–1×102 oocysts ml-1. The oocyst detection was also successfully achieved in natural water systems. These results indicate that the SPR-based inhibition assay using the Cryptosporidium sensor chip has high application potential for the real-time analysis of C. parvum oocyst in laboratory and field water monitoring.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
OBJECTIVE - To evaluate an algorithm guiding responses of continuous subcutaneous insulin infusion (CSII)-treated type 1 diabetic patients using real-time continuous glucose monitoring (RT-CGM). RESEARCH DESIGN AND METHODS - Sixty CSII-treated type 1 diabetic participants (aged 13-70 years, including adult and adolescent subgroups, with A1C =9.5%) were randomized in age-, sex-, and A1C-matched pairs. Phase 1 was an open 16-week multicenter randomized controlled trial. Group A was treated with CSII/RT-CGM with the algorithm, and group B was treated with CSII/RT-CGM without the algorithm. The primary outcome was the difference in time in target (4-10 mmol/l) glucose range on 6-day masked CGM. Secondary outcomes were differences in A1C, low (=3.9 mmol/l) glucose CGM time, and glycemic variability. Phase 2 was the week 16-32 follow-up. Group A was returned to usual care, and group B was provided with the algorithm. Glycemia parameters were as above. Comparisons were made between baseline and 16 weeks and 32 weeks. RESULTS - In phase 1, after withdrawals 29 of 30 subjects were left in group A and 28 of 30 subjects were left in group B. The change in target glucose time did not differ between groups. A1C fell (mean 7.9% [95% CI 7.7-8.2to 7.6% [7.2-8.0]; P <0.03) in group A but not in group B (7.8% [7.5-8.1] to 7.7 [7.3-8.0]; NS) with no difference between groups. More subjects in group A achieved A1C =7% than those in group B (2 of 29 to 14 of 29 vs. 4 of 28 to 7 of 28; P = 0.015). In phase 2, one participant was lost from each group. In group A, A1C returned to baseline with RT-CGM discontinuation but did not change in group B, who continued RT-CGM with addition of the algorithm. CONCLUSIONS - Early but not late algorithm provision to type 1 diabetic patients using CSII/RT-CGM did not increase the target glucose time but increased achievement of A1C =7%. Upon RT-CGM cessation, A1C returned to baseline. © 2010 by the American Diabetes Association.
Resumo:
This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.