995 resultados para REACTION LAYER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

River water composition (major ion and Sr-87/Sr-86 ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L-1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L-1), with radiogenic Sr-87/Sr-86 isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and Sr-87/Sr-86 and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and Sr-87/Sr-86 isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and Sr-87/Sr-86 isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrically conducting, continuous films of different phases of palladium selenides are synthesized by the thermolysis of single source molecular precursors. The films are found to be adherent on flat substrates such as glass, indium tin oxide and glassy carbon and are stable under electrochemical conditions. They are electrocatalytically active and in particular, for hydrogen evolution reaction. Catalytic activities with low Tafel slopes of 50-60 mV per decade are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the dynamics of photoinduced carriers in a free-standing MoS2 laminate consisting of a few layers (1-6 layers) using time-resolved optical pump-terahertz probe spectroscopy. Upon photoexcitation with the 800 nm pump pulse, the terahertz conductivity increases due to absorption by the photoinduced charge carriers. The relaxation of the non-equilibrium carriers shows fast as well as slow decay channels, analyzed using a rate equation model incorporating defect-assisted Auger scattering of photoexcited electrons, holes, and excitons. The fast relaxation time occurs due to the capture of electrons and holes by defects via Auger processes, resulting in nonradiative recombination. The slower relaxation arises since the excitons are bound to the defects, preventing the defect-assisted Auger recombination of the electrons and the holes. Our results provide a comprehensive understanding of the non-equilibrium carrier kinetics in a system of unscreened Coulomb interactions, where defect-assisted Auger processes dominate and should be applicable to other 2D systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for acylation for heteroarenes under metal-free conditions has been described using NCS as an additive and TBHP as an oxidant. This method has been successfully employed in acylation of a variety of aldehyde with heteroarenes. The application of the method has been illustrated in synthesizing isoquinoline derived natural products. This strategy provides an efficient, mild and inexpensive method for acylation of heteroarenes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When one starts to analyze the evolution of the interfacial reaction product layers between dissimilar materials it is often found out that as the number of interacting species grows, the complexity of the analysis increases extremely rapidly. It may even appear that the task is just too difficult to be completed. In this article we present the thermodynamic-kinetic method, which can be used to rationalize the evolution of interfacial reaction layers and bring back the physics to the analyses. The method is conceptually very simple. It combines energetics-what can happen-with kinetics-how fast things take place. Yet the method is flexible enough that it can utilize quantitative and qualitative data starting from the atomistic simulations up to the experiments carried out with bulk materials. Several examples about how to utilize this method in material scientific problems are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient buffer layer scheme has been designed to address the issue of curvature management during metalorganic chemical vapour deposition growth of GaN on Si (111) substrate. This is necessary to prevent cracking of the grown layer during post-growth cooling down from growth temperature to room temperature and to achieve an allowable bow (<40 m) in the wafer for carrying out lithographic processes. To meet both these ends simultaneously, the stress evolution in the buffer layers was observed carefully. The reduction in precursor flow during the buffer layer growth provided better control over curvature evolution in the growing buffer layers. This has enabled the growth of a suitable high electron mobility transistor (HEMT) stack on 2'' Si (111) substrate of 300 m thickness with a bow as low as 11.4 m, having a two-dimensional electron gas (2DEG) of mobility, carrier concentration, and sheet resistance values 1510 cm(2)/V-s, 0.96 x 10(13)/cm(2), and 444 /, respectively. Another variation of similar technique resulted in a bow of 23.4 m with 2DEG mobility, carrier concentration, and sheet resistance values 1960 cm(2)/V-s, 0.98 x 10(13)/cm(2), and 325 /, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.