971 resultados para Protein structures
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
Leptospirosis is a zoonotic disease of global distribution, which affects both animals and humans. Pathogenic leptospires, the bacteria that cause this disease, require iron for their growth, and these spirochetes probably use their hemolysins, such as the sphingomyelinases, as a way to obtain this important nutrient from host red blood cells during infection. We expressed and purified the leptospiral sphingomyelinases Sph1, Sph2, Sph4, and SphH in a heterologous system. However, the recombinant proteins were not able to lyse sheep erythrocytes, despite having regular secondary structures. Transcripts for all sphingomyelinases tested were detected by RT-PCR analyses, but only Sph2 and SphH native proteins could be detected in Western blot assays using Leptospira whole extracts as well as in renal tubules of infected hamsters. Moreover, antibodies present in the serum of a human patient with laboratory-confirmed leptospirosis recognized Sph2, indicating that this sphingomyelinase is expressed and exposed to the immune system during infection in humans. However, in an animal challenge model, none of the sphingomyelinases tested conferred protection against leptospirosis.
Resumo:
Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.
Resumo:
The role of TlyA, TlyB and TlyC proteins in the biology of Leptospira is still uncertain. Although these proteins have been considered as putative hemolysins, we demonstrate that leptospiral recombinant TlyB and TlyC do not possess hemolytic activity. However, further experiments showed that TlyC is a surface-exposed protein that seems to bind to laminin, collagen IV and fibronectin. The expression of both proteins was detected both in vitro and in vivo. Our findings suggest that TlyB and TlyC are not directly involved in hemolysis, and that TlyC may contribute to Leptospira binding to extracellular matrix (ECM) during host infection. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the protein requirements for hand-rearing Blue-fronted Amazon parrots (Amazona aestiva). Forty hatchlings were fed semi-purified diets containing one of four (as-fed basis) protein levels: 13%, 18%, 23% and 28%. The experiment was carried out in a randomized block design with the initial weight of the nestling as the blocking factor and 10 parrots per protein level. Regression analysis was used to determine relationships between protein level and biometric measurements. The data indicated that 13% crude protein supported nestling growth with 18% being the minimum tested level required for maximum development. The optimal protein concentration for maximum weight gain was 24.4% (p = 0.08; r(2) = 0.25), tail length 23.7% (p = 0.09; r(2) = 0.19), wing length 23.0% (p = 0.07; r(2) = 0.17), tarsus length 21.3% (p = 0.06; r(2) = 0.10) and tarsus width 21.4% (p = 0.07; r(2) = 0.09). Tarsus measurements were larger in males (p < 0.05), indicating that sex must be considered when studying developing psittacines. These results were obtained using a highly digestible protein and a diet with moderate metabolizable energy levels.
Resumo:
Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B(2) and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B, and C when CW replaced NDF; however there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B(1) (starch + pectin) values were lower than pectin determined through wet chemistty. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B(1) but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B(3)) be adopted for the digestible cell wall carbohydrates.
Resumo:
Organisms of the genera Toxoplasma, Hammondia and Neospora, the Hammondia-like organisms, are closely related coccidian with similarly sized oocysts. Therefore, a diagnosis based on microscopy of oocysts in feces is not a method of choice for species identification of these important parasites. In this paper, we present a polymerase chain reaction coupled with restriction fragment length polymorphism (PCR-RFLP) method to differentially diagnose oocysts of Toxoplasma gondii from oocyst of Hammondia hammondi. Another PCR-RFLP was designed to differentiate oocysts of Hammondia heydorni from oocysts of Neospora spp. Both PCR-RFLP are based on nucleotide sequences of the Hsp70 coding gene. In conclusion, we presented two alternative molecular diagnostic assays that can be successfully applied for the differentiation of oocysts of Hammondia-like organisms shed by felids and canids.
Resumo:
The regulation of gene expression by environmental signals, such as temperature and osmolarity, has been correlated with virulence. In this study, we characterize the protein LipL53 from Leptospira interrogans, previously shown to react with serum sample of individual diagnosed with leptospirosis and to be up-regulated by shift to physiological osmolarity. The recombinant protein was expressed in Escherichia coli system, in insoluble form, recovered by urea solubilization and further refolded by decreasing the denaturing agent concentration during the purification procedure. The secondary structure content of the recombinant LipL53, as assessed by circular dichroism, showed a mixture of beta-strands and alpha-helix. The presence of LipL53 transcript at 28 degrees C was only detected within the virulent strains. However, upon shifted of attenuated cultures of pathogenic strains from 28 degrees C to 37 degrees C and to 39 degrees C, this transcript could also be observed. LipL53 binds laminin, collagen IV, cellular and plasma fibronectin in dose-dependent and saturable manner. Animal challenge studies showed that LipL53, although immunogenic, elicited only partial protection in hamsters. LipL53 is probably surface exposed as seen through immunofluorescence confocal microscopy. Our results suggest that LipL53 is a novel temperature regulated adhesin of L. interrogans that may be relevant in the leptospiral pathogenesis. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63 kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The study of a predicted outer membrane leptospiral protein encoded by the gene LIC12690 in mediating the adhesion process. Methods: The gene was cloned and expressed in Escherichia coli BL21 (SI) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and used to assess its ability to activate human umbilical vein endothelial cells (HUVECs). Results: The recombinant leptospiral protein of 95 kDa, named Lp95, activated E-selectin in a dose-dependent fashion but not the intercellular adhesion molecule 1 (ICAM-1). In addition, we show that pathogenic and non-pathogenic Leptospira are both capable to stimulate endothelium E-selectin and ICAM-1, but the pathogenic L. interrogans serovar Copenhageni strain promotes a statistically significant higher activation than the non-pathogenic L. biflexa serovar Patoc (P < 0.01). The Lp95 was identified in vivo in the renal tubules of animal during experimental infection with L. interrogans. The whole Lp95 as well as its fragments, the C-terminal containing the domain of unknown function (DUF), the N-terminal and the central overlap regions bind laminin and fibronectin ECM molecules, being the binding stronger with the DUF containing fragment. Conclusion: This is the first leptospiral protein capable to mediate the adhesion to ECM components and the activation of HUVECS, thus suggesting its participation in the pathogenesis of Leptospira. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.
Resumo:
Introduction: This study evaluated the healing of mandibular condylar fracture in rats submitted to experimental and protein undernutrition (8% of protein) by means of histological analysis. Material: Forty-five adult Wistar rats were divided into three groups of 15 animals: a fracture group, who were submitted to condylar fracture with no changes in diet; an undernourished fracture group, who were submitted to a low protein diet and condylar fracture: an undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were created under general anaesthesia. The histological study comprised fracture site and temporomandibular joint evaluations. Results: The undernourished fracture group showed significant weight loss. There was a marked decrease in the values of serum proteins and albumin in the undernourished fracture group. Histological analysis showed that protein undernutrition lead to atrophy of the condylar fibrocartilage. Fractures in undernutrition presented a delay in callus formation due to more extensive devitalized bone areas, and after 3 months there were still bone formation areas, while fibrous ankylosis occurred in the articular space. Conclusion: It was concluded that mandibular condyle fractures in rats with protein undernutrition had impaired callus formation, as well as fibrous ankylosis into the temporomandibular joint. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.