896 resultados para Properties and Applications
Resumo:
In this work we propose the study of the spectroscopy properties and the energy level location of Ce(3+) and Pr(3+) in Gd(2)O(2)S, along with the effects of Ce(4+) (Ce(2)O(2)S(2)) incorporation in Gd(2)O(2)S and Gd(2)O(2)S: Pr(3+) in order to understand the formation and position of the associated defects energy levels in relation to the band structure of Gd(2)O(2)S and Pr(3+) energy levels. Ce-, Pr(3+)-doped and Pr(3+), Ce-doped Gd(2)O(2)S were prepared by the sulfidization of a basic gadolinium carbonate with S(8) using H(2)/N(2) (3.0/97.0%) and air during the firing of the precursor. Samples were analyzed by X-ray diffraction in order to guarantee the formation of the Gd(2)O(2)S single phase. Diffuse reflectance spectroscopy and luminescent measurements (emission/excitation) were used to locate Ce(3+), Pr(3+) and defects energy levels in relation to the band structure of Gd(2)O(2)S. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The ZnO luminescent properties are strongly influenced by the preparation method and they are principally related to electronic and crystalline structures. This work reports about the correlation among luminescence properties of ZnO, obtained from zinc hydroxycarbonate, and crystalline lattice defects, microstrain, as function of thermal treatment. The crystallite size increase and the qualitative microstrain, obtained by Williamson-Hall plots, decrease as function of temperature. The evolution of electronic defects is analyzed by luminescence spectroscopy based on energy of the electronic transitions. From excitation spectrum, it is verified two bands around 377 nm and 405 nm attributed to the transitions between valence-conduction bands and valence band to interstitial zinc level, respectively. The emission spectra of sample treated at 600 degreesC shows large band at 670 nm. However, the green emission around 530 nm is observed for samples treated at 900 degreesC. The intensities of excitation and emission bands are associated with the increase of the electronic defects that depend on the strain lattice decrease. The lowest strain lattice results on the best green luminescent properties of zinc oxide. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This article presents empirical correlations to predict the density, specific heat, thermal conductivity and rheological power-law parameters of liquid egg yolk over a temperature range compatible with its industrial thermal processing (0-61 C). Moreover, a mathematical model for a pasteurizer that takes into account the spatial variation of the overall heat transfer coefficient throughout the plate heat exchanger is presented, as are two of its simplified forms. The obtained correlations of thermophysical properties are applied for the simulation of the egg yolk pasteurization, and the obtained temperature profiles are used for evaluating the extent of thermal inactivation. A detailed simulation example shows that there is a considerable deviation between the designed level of heat treatment and that this is predicted through process simulation. It is shown that a reliable mathematical model, combined with specialized thermophysical property correlations, provide a more accurate design of the pasteurization equipment that ensures effective inactivation, while preserving nutritional and sensorial characteristics.
Resumo:
Direct and simultaneous measurements of hydration water content and protein conformation have been performed using quartz crystal microbalance and visible absorption spectroscopy. Equilibrium and kinetics of methaemoglobin/haemichrome transition induced by the alteration of the degree of hydration was investigated in thin films exposed to controlled humidity. The kinetics experiment show that the conversion of species achieve the equilibrium more rapidly that the amount of sorbed water by the protein. The transition shows a sigmoid behaviour and suggest cooperative phenomena manifested by haem-haem interaction. The water hydration network contributing to the haem haem interaction advise that water acts as allosteric effectors for the conversion between species. Irreversible changes produced by complete drying are clearly shown.
Resumo:
SnO2 varistors doped with CoO, Cr2O3 and Nb2O5 were prepared by evaporation and decomposition of suspensions. The composition of the varistors was optimized to improve electrical properties, such as nonlinearity, leakage current and electrical stability. The best results were achieved with the following composition: 99.15% SnO2 +0.75% CoO+0.05% Cr2O3 +0.05% Nb2O5. Samples showed high density, reaching 99.5% of the theoretical density, as well as an homogeneous microstructure. The nonlinear coefficient was higher than 30 in the current range from 10(-7) to 10(-2) A/cm(2). The leakage current was 0.86 mu A/cm(2). These samples showed high stability of electrical parameters when they were exposed to high current of 27 mA/cm(2) for different time periods up to 30 min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid siloxane-polymethylmethacrylate (PMMA) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (polymer) phases were prepared by the sot gel process through hydrolysis and polycondensation of 3-(trimethoxysilyl)propylmethacrylate (TMSM) and polymerization of methylmethacrylate (MMA) using benzoyl peroxide (BPO) as initiator. The effect of MMA, BPO and water contents on the viscoelastic behaviour of these materials was analysed during gelation by dynamic rheological measurements. The changes in storage (G') and loss moduli (G), complex viscosity (eta*) and phase angle (6) were measured as a function of the reaction time showing the viscous character of the sot in the initial step of gelation and its progressive transformation to an elastic gel. This study was complemented by Si-29 and C-13 solid-state nuclear magnetic resonance (NMR/MAS) measurements of dried gel. The analysis of the experimental results shows that linear chains are formed in the initial step of the gelation followed by a growth of branched structures and formation of a three-dimensional network. Near the gel point this hybrid material demonstrates the typical scaling behaviour expected from percolation theory.
Resumo:
Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.
Resumo:
The physicochemical properties and morphology of spongolite, a fibrous hollow material from Mato Grosso do Sul State (Brazil) have been studied. The results of thermal analysis, scanning electron microscopy (SEM), X-ray diffraction and NMR spectroscopy indicated that external and internal surfaces of silica spicules are covered by silica gel layers. The water evolved in the range 120-350degreesC is the result of silanol groups condensation to siloxane bonds. Total homogenization of the needles is achieved by heating spongolite over 900degreesC. This mineral may be considered as a natural composite material containing surface-immobilized reactive species. The presence of active silica gel layers opens the possibilities of attaching functional groups to spongolite surface. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The rheological behavior of egg yolk was studied at a range of temperatures (277-333 K) using a concentric cylinder viscometer. Rheological behavior was pseudoplastic and flow curves fitted by the power law model. The consistency and behavior indexes, dependent on temperature, were expressed by an Arrhenius-type equation. The rheological parameters, together with experimental values of pressure loss in tube flow were used to calculate friction factors. The good agreement between predicted and observed values confirmed the reliability of the equations proposed for describing the flow behavior of the egg yolk. (c) 2005 Published by Elsevier Ltd.
Resumo:
We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.
Resumo:
Ranzini (1988) proposed the Standard Penetration Test with torque measurement (SPT-T) and some geotechnical engineers in Brazil have been using it since 1991. This paper presents the state of the art on SPT-T testing, emphasizing what is already established as common knowledge in Brazilian engineering practice, besides a suggestion for test procedure, including equipment and practical aspects. In addition, the study of the shape of the torque versus rotation-degree angle curve obtained by an electric torquemeter used in several SPT-T tests carried out on six experimental research sites in the southeast region of Brazil is discussed here. Four different methods to predict pile capacity based on SPT-T test results are briefly presented and a comparison with load tests carried out on different types of piles, on those six experimental research sites, is presented.
Resumo:
Pseudomonas aeruginosa LBI isolated from petroleum-contaminated soil produced rhamnolipids (RLLBI) when cultivated on soapstock as the sole carbon source. HPLC-MS analysis of the purified culture supernatant identified 6 RL homologues (%): R-2 C-10 C-10 28.9; R-2 C-10 C-12:1 23.0; R-1 C-10 C-10 23.4; R-2 C-10 C-12 11.3; R-2 C-10 C-12 7.9; R-2 C-10 C-12 C-12 5.5. To assess the potential antimicrobial activity of the new rhamnolipid product, RLLBI, its physicochemical properties were studied. RLLBI had a surface tension of 24 mN m(-1) and an interfacial tension 1.31 mN m(-1); the cmc was 120 mg l(-1). RLLBI produced stable emulsions with hydrocarbons and vegetable oils. This product showed good antimicrobial behaviour against bacteria: MIC for Bacillus subtilis, Staphylococcus aureus and Proteus vulgaris was 8 mg l(-1), for Streptococcus faecalis 4 mg l(-1), and for Pseudomonas aeruginosa 32 mg l(-1). RLLBI was active against phytopathogenic fungal species, MIC values of 32 mg l(-1) being found against Penicillium, Alternaria, Gliocadium virens and Chaetonium globosum. Due to its physicochemical properties and antimicrobial behaviour, RLLBI could be used in bioremediation treatment and in the food, cosmetic and pharmaceutical industries.
Resumo:
Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P= 1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 513 congruent to 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, bad not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
A more direct and efficient route to the syntheses of [Ru(NH3)(4)(X-Y)](BF4)(2), where X-Y can be 2-acetylpyridine (2-acpy) or 2-benzoylpyridine (2-bzpy), based on the reactions of [RuCl(NH3)(5)]Cl-2 with these ortho-substituted azines is described. The [Ru(2-acpy)(NH3)(4)](BF4)(2) and [Ru(NH3)(5)(2-bzpy)](BF4)(2) complexes have a molar conductance of 328 and 292 Ohm(-1) cm(2) mol(-1), respectively, corresponding to a 1:2 species in solution. These complexes showed two intense absorption bands around 620-650 and 380 nm, the energies of which are solvent dependent, decreasing with the increase of the Gutman's donor number of the solvent, and were assigned as metal-to-ligand charge transfer (MLCT). The complexes have oxidation potentials (Ru-II/III) of +0.380 V vs. Ag/AgCl (2-acpy) and +0.400 V vs. Ag/AgCl (2-bzpy), and reduction potentials (X-Y0/-) of -1.10 V vs. Ag/AgCl (2-acpy) and -0.950 V vs. Ag/AgCl (2-bzpy) on CF3COOH/NaCF3COO at pH=3.0, scan rate 100 mV s(-1), [Ru]=1.0x10(-3) mol l(-1). Both processes show a coupled chemical reaction. Upon oxidation of the metal center, the MLCT absorption bands are bleached and restored upon subsequent reduction. In order to confirm the structure of the complexes a detailed LH NMR investigation was performed in d(6)-acetone. Further confirmation of the structure was obtained by recording the N-15 NMR spectrum of [Ru(NH3)(4)(2-bzpy)](2+) in d(6)-DMSO using the INEPT pulse sequence improving the sensitivity of N-15 by polarization transfer from the protons to the N-15. The Nuclear Overhauser Effect (NOE) experiments were made qualitatively for [Ru(NH3)(4)(2-acpy)](2+), and showed that H-6 of the pyridine is close to a NH3 proton, which should then be in a cis position, and, hence, confirming that acpy is acting as a bidentate ligand. (C) 1999 Elsevier B.V. Ltd. All rights reserved.