979 resultados para Private Vehicle Transportation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the design and development details of a micro air vehicle (MAV) built around a quadrotor configuration. A survey of implemented MAVs suggests that a quadrotor design has several advantages over other configurations, especially in the context of swarm intelligence applications. Our design approach consists of three stages. However, the focus of this paper is restricted to the first stage that involves selection of crucial components such as motor-rotor pair, battery source, and structural material. The application of MAVs are broad-ranging, from reconnaissance to search and rescue, and have immense potential in the rapidly advancing field of swarm intelligence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a robust fixed order H2controller design using strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H2controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report talks about the implementation of Vehicle Detection tool using opensource software - WxPython. The main functionality of this tool includes collection of data, plotting of magnetometer data and the count of the vehicles detected. The report list about how installation process and various functionality of the tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements. The problem with performing a combined cross-functional optimization is the time associated with running such CAE algorithms that can provide a single optimal solution for heterogeneous areas such as NVH and crash safety. In the present paper, a practical MDO methodology is suggested that can be applied to weight optimization of automotive body structures by specifying constraints on frequency and crash performance. Because of the reduced number of cases to be analyzed for crash safety in comparison with other MDO approaches, the present methodology can generate a single size-optimized solution without having to take recourse to empirical techniques such as response surface-based prediction of crash performance and associated successive response surface updating for convergence. An example of weight optimization of spaceframe-based BIW of an aluminum-intensive vehicle is given to illustrate the steps involved in the current optimization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of developing privacy-preserving machine learning algorithms in a dis-tributed multiparty setting. Here different parties own different parts of a data set, and the goal is to learn a classifier from the entire data set with-out any party revealing any information about the individual data points it owns. Pathak et al [7]recently proposed a solution to this problem in which each party learns a local classifier from its own data, and a third party then aggregates these classifiers in a privacy-preserving manner using a cryptographic scheme. The generaliza-tion performance of their algorithm is sensitive to the number of parties and the relative frac-tions of data owned by the different parties. In this paper, we describe a new differentially pri-vate algorithm for the multiparty setting that uses a stochastic gradient descent based procedure to directly optimize the overall multiparty ob-jective rather than combining classifiers learned from optimizing local objectives. The algorithm achieves a slightly weaker form of differential privacy than that of [7], but provides improved generalization guarantees that do not depend on the number of parties or the relative sizes of the individual data sets. Experimental results corrob-orate our theoretical findings.