986 resultados para Portion size


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, nanocrystalline Ni (nc-Ni) with a broad grain size distribution (BGSD) of 5-120 nm and an average grain size of 27.2 nm was prepared. The BGSD nc-Ni sample shows a similar strength and good ductility in comparison with electrodeposited nc-Ni with a narrow grain size distribution. The intracrystalline dislocation network was observed in the post-deformed microstructure confirming the conventional intracrystalline dislocation sliding mechanism in BGSD nc-Ni. The uniaxial tensile loading-unloading-loading deformation shows BGSD nc-Ni has the capability to store dislocations in the grain interior, which is very limited compared with that of coarse grained metals. For BGSD nc-Ni, the strain rate sensitivity of flow stress m enhances with decreasing strain rate. At the strain rate of 5 x 10(-6) s(-1), m was estimated to be 0.055. At the corresponding strain rate, the enhanced ductility along with the decreased strength was achievable, indicating activation of other deformation mechanisms, e. g. grain boundary sliding or diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-fibrillar adhesives can adhere strongly to surfaces as a gecko does. The size of each fiber has significant effects on the adhesion enhancement, especially on rough surfaces. In the present study, we report the size effects on the normal and shear strength of adhesion for a single viscoelastic fiber. It is found that there exists a limited region of the critical sizes under which the interfacial normal or tangential tractions uniformly attain the theoretical adhesion strength. The region for a viscoelastic fiber under tension with similar material constants to a gecko's spatula is 135-255 nm and that under torque is 26.5-52 nm. This finding is significant for the development of artificial biomimetic attachment systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.