940 resultados para Plasma amino acids


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N-(sic)-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of alpha-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A similar to 42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed similar to 40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Haemophilus influenzae and Helicobacter pylori are major bacterial pathogens that face high levels of genotoxic stress within their host. UvrD, a ubiquitous bacterial helicase that plays important roles in multiple DNA metabolic pathways, is essential for genome stability and might, therefore, be crucial in bacterial physiology and pathogenesis. In this study, the functional characterization of UvrD helicase from Haemophilus influenzae and Helicobacter pylori is reported. UvrD from Haemophilus influenzae (HiUvrD) and Helicobacter pylori (HpUvrD) exhibit strong single-stranded DNA-specific ATPase and 3'5' helicase activities. Mutation of highly conserved arginine (R288) in HiUvrD and glutamate (E206) in HpUvrD abrogated their activities. Both the proteins were able to bind and unwind a variety of DNA structures including duplexes with strand discontinuities and branches, three- and four-way junctions that underpin their role in DNA replication, repair and recombination. HiUvrD required a minimum of 12 nucleotides, whereas HpUvrD preferred 20 or more nucleotides of 3'-single-stranded DNA tail for efficient unwinding of duplex DNA. Interestingly, HpUvrD was able to hydrolyze and utilize GTP for its helicase activity although not as effectively as ATP, which has not been reported to date for UvrD characterized from other organisms. HiUvrD and HpUvrD were found to exist predominantly as monomers in solution together with multimeric forms. Noticeably, deletion of distal C-terminal 48 amino acid residues disrupted the oligomerization of HiUvrD, whereas deletion of 63 amino acids from C-terminus of HpUvrD had no effect on its oligomerization. This study presents the characteristic features and comparative analysis of Haemophilus influenzae and Helicobacter pylori UvrD, and constitutes the basis for understanding the role of UvrD in the biology and virulence of these pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of D-and L-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 angstrom resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with DL-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of energetically less favourable cis peptides in protein structures has been observed to be strongly associated with its structural integrity and function. Inter-conversion between the cis and trans conformations also has an important role in the folding process. In this study, we analyse the extent of conservation of cis peptides among similar folds. We look at both the amino acid preferences and local structural changes associated with such variations. Nearly 34% of the Xaa-Proline cis bonds are not conserved in structural relatives; Proline also has a high tendency to get replaced by another amino acid in the trans conformer. At both positions bounding the peptide bond, Glycine has a higher tendency to lose the cis conformation. The cis conformation of more than 30% of beta turns of type VIb and IV are not found to be conserved in similar structures. A different view using Protein Block-based description of backbone conformation, suggests that many of the local conformational changes are highly different from the general local structural variations observed among structurally similar proteins. Changes between cis and trans conformations are found to be associated with the evolution of new functions facilitated by local structural changes. This is most frequent in enzymes where new catalytic activity emerges with local changes in the active site. Cis-trans changes are also seen to facilitate inter-domain and inter-protein interactions. As in the case of folding, cis-trans conversions have been used as an important driving factor in evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diaminopropionate ammonia lyase (DAPAL) is a pyridoxal-5'phosphate (PLP)-dependent enzyme that catalyzes the conversion of diaminopropionate (DAP) to pyruvate and ammonia and plays an important role in cell metabolism. We have investigated the role of the ygeX gene of Escherichia coli K-12 and its ortholog, STM1002, in Salmonella enterica serovar Typhimurium LT2, presumed to encode DAPAL, in the growth kinetics of the bacteria. While Salmonella Typhimurium LT2 could grow on DL-DAP as a sole carbon source, the wild-type E. coli K-12 strain exhibited only marginal growth on DL-DAP, suggesting that DAPAL is functional in S. Typhimurium. The expression of ygeX in E. coli was low as detected by reverse transcriptase PCR (RT-PCR), consistent with the poor growth of E. coli on DL-DAP. Strains of S. Typhimurium and E. coli with STM1002 and ygeX, respectively, deleted showed loss of growth on DL-DAP, confirming that STM1002 (ygeX) is the locus encoding DAPAL. Interestingly, the presence of DL-DAP caused a growth inhibition of the wild-type E. coli strain as well as the knockout strains of S. Typhimurium and E. coli in minimal glucose/glycerol medium. Inhibition by DL-DAP was rescued by transforming the strains with plasmids containing the STM1002 (ygeX) gene encoding DAPAL or supplementing the medium with Casamino Acids. Growth restoration studies using media lacking specific amino acid supplements suggested that growth inhibition by DL-DAP in the absence of DAPAL is associated with auxotrophy related to the inhibition of the enzymes involved in the biosynthetic pathways of pyruvate and aspartate and the amino acids derived from them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of Delta pepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of Delta pepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1: 10 molar concentration of abrin: antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus aureus is a Gram-positive nosocomial pathogen. The prevalence of multidrug-resistant S. aureus strains in both hospital and community settings makes it imperative to characterize new drug targets to combat S. aureus infections. In this context, enzymes involved in cell-wall maintenance and essential amino-acid biosynthesis are significant drug targets. Homoserine dehydrogenase (HSD) is an oxidoreductase that is involved in the reversible conversion of l-aspartate semialdehyde to l-homoserine in a dinucleotide cofactor-dependent reduction reaction. HSD is thus a crucial intermediate enzyme linked to the biosynthesis of several essential amino acids such as lysine, methionine, isoleucine and threonine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and PurposeStudies have demonstrated that a moderate intake of amino acids is associated with development of bone health. Methionine, a sulphur-containing essential amino acid, has been largely implicated for improving cartilage formation, however its physiological significance on bone integrity and functionality have not been elucidated. We investigated whether methionine can prevent osteoporotic bone loss. Experimental ApproachThe anti-resorptive effect of methionine, (250mgkg(-1) body wt administered in drinking water for 10 weeks), was evaluated in ovariectomized (OVX) rats by monitoring changes in bone turnover, formation of osteoclasts from blood-derived mononuclear cells and changes in the synthesis of pro-osteoclastogenic cytokines. Key resultsMethionine improved bone density and significantly decreased the degree of osteoclast development from blood mononuclear cells in OVX rats, as indicated by decreased production of osteoclast markers tartarate resistant acid phosphatase b (TRAP5b) and MIP-1. siRNA-mediated knockdown of myeloid differentiation primary response 88 MyD88], a signalling molecule in the toll-like receptor (TLR) signalling cascade, abolished the synthesis of both TRAP5b and MIP-1 in developing osteoclasts. Methionine supplementation disrupted osteoclast development by inhibiting TLR-4/MyD88/NF-B pathway. Conclusions and ImplicationsTLR-4/MyD88/NF-B signalling pathway is integral for osteoclast development and this is down-regulated in osteoporotic system on methionine treatment. Methionine treatment could be beneficial for the treatment of postmenopausal osteoporosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of the diazo transfer reaction which converts amines to azides has been studied with labeled amino acids and labeled imidazole-l-sulfonyl azides. Retention of amine nitrogen in the amine, and transfer of the two terminal nitrogen atoms of the imidazole-l-sulfonyl azide to the product, were unambiguously established. (C) 2014 Elsevier Ltd. All rights reserved.