963 resultados para Phenol soluble modulin
Resumo:
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Resumo:
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen I protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.
Resumo:
Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.
Resumo:
Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.
Resumo:
The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.
Resumo:
Raw milk was stored for 0, 2 and 4 days and processed in a UHT pilot plant by either direct or indirect heating. The unstored raw milk was also pasteurised. The thermally induced changes resulting from these treatments were investigated by examining a number of indices of heat damage. Lactulose, furosine, total and free hydroxymethylfurfural (HMF) and acid-soluble beta-lactoglobulin were analysed by high performance liquid chromatography (HPLC) while soluble tryptophan was examined by fluorescence spectroscopy. The directly heated UHT milk showed less heat damage than the indirectly heated milk, while the pasteurised milk displayed the least heat damage. During storage of the UHT milk for 12 weeks at similar to20degreesC, the levels of lactulose remained constant, while the furosine concentration increased. Both the total HMF and undenatured beta-lactoglobulin contents showed a general decrease during storage; however free HMF values initially rose but then decreased after four weeks' storage. As the age of the milk at the time of UHT processing increased, the levels of some of the indicators decreased. It is concluded that lactulose is the most reliable index of heat treatment, as it is virtually unaffected by refrigerated storage of the milk before or ambient storage after UHT processing. Reliance on other indicators may give misleading information on the heat load that UHT milk has received during processing.
Resumo:
Proteolysis of UHT milk during storage at room temperature is a major factor limiting its shelf-life through changes in its flavour and texture. The latter is characterised by increases in viscosity leading in some cases to gel formation. The enzymes responsible for the proteolysis are the native milk alkaline proteinase, plasmin, and heat-stable, extracellular bacterial proteinases produced by psychrotrophic bacterial contaminants in the milk prior to heat processing. These proteinases react differently with the milk proteins and produce different peptides in the UHT milk. In order to differentiate these peptide products, reversed-phase HPLC and the fluorescamine method were used to analyse the peptides soluble in 12% trichloroacetic acid (TCA) and those soluble at pH 4.6. The TCA filtrate showed substantial peptide peaks only if the milk was contaminated by bacterial proteinase, while the pH 4.6 filtrate showed peptide peaks when either or both bacterial and native milk proteinases caused the proteolysis. Results from the fluorescamine test were in accordance with the HPLC results whereby the TCA filtrate exhibited significant proteolysis values only when bacterial proteinases were present, but the pH 4.6 filtrates showed significant values when the milk contained either or both types of proteinase. A procedure based on these analyses is proposed as a diagnostic test for determining which type of proteinase-milk plasmin, bacterial proteinase, or both-is responsible for proteolysis in UHT milk. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Two varieties of adzuki grown in Australia, Bloodwood and Erimo, were stored for up to 6 months at three temperatures (10, 20 and 30 degreesC), and two relative humidities (RH; 40 and 65%). The amount of cell wall material increased with time under all storage conditions. This increase was greatest at 30 degreesC and 40% RH. Storage time and conditions did not affect the total pectin levels in the cell wall. Erimo constantly exhibited a higher total pectin level than Bloodwood. The Bloodwood soluble pectin, Ca++ and Mg++ and Erimo Ca++ in the cell wall remained stable during storage, while the Erimo soluble pectin and Mg++ exhibited a slight decrease at 20 and 30 degreesC after 3 months of storage. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and
Resumo:
The radiation chemical yields G(S) and G(X) for H-linking and Y-linking models for Ultem have been calculated from molecular weight analysis by gel permeation chromatography. These G-values have been compared with the G-values obtained from analysis of soluble fractions above the gel dose, Which have been reported in previous works. An analysis of the molecular weight data in terms of H-linking and Y-linking mechanisms yielded values of G(S-H) = 1.0 x 10(-3) and G(H) = 6.0 x 10(-3) and G(S-Y) = 1.3 x 10(-2) and G(Y) = 1.8 x 10(-2). The corresponding values obtained from the solubility data were G(SH) = 0.53 x 10(-2), G(H) = 1.39 x 10(-2), G(S-Y) = 4.2 x 10(-2) and G(Y) - 4.6 x 10(-2). The origin of the disagreement between the molecular weight and solubility values is not clear, but it could arise as a result of observed microgel formation below the reported gel dose of 0.13 MGy. Whether the crosslink mechanism proceeds by an H-linking or Y-linking process is also unclear and will require direct observation of the crosslinking structures.
Resumo:
A utilização do solo no Brasil foi realizada de forma exploratória, com a conversão de sistemas naturais em sistemas agrícolas extrativistas. Grande parte das áreas de sistemas naturais deu lugar às áreas de cultivo, posteriormente sucedidas por pastagens, encontrando-se boa parte em elevado estágio de degradação. Diante do exposto, o presente trabalho tem como objetivo avaliar a sensibilidade de alguns atributos físicos, químicos, compartimentos da matéria orgânica e determinações de campo como indicadores de qualidade do solo estabelecendo relações entre os mesmos. O estudo foi desenvolvido no município de Governador Valadares-MG, para tal foram escolhidos níveis de pastagens progressivamente degradadas observadas visualmente (pastagem 1, pastagem 2, pastagem 3 e pastagem 4), duas áreas de capoeira em estágios de regeneração natural (capoeira 1 e capoeira 2) e mata (referência). O solo em estudo foi um Argissolo Vermelho, textura argilosa. As determinações dos indicadores físicos, químicos e compartimentos da matéria orgânica foram realizadas em quatro profundidades (0-5, 5-10, 10-20 e 20-40 cm). Foram realizadas também determinações de campo, todos os atributos foram determinados no terço médio de uma pedoforma convexa, em dois períodos, chuvoso e seco. Através dos atributos do solo utilizados como indicadores do solo, foi possível separar dois níveis de pastagens degradadas, baixa degradação (pastagem 1 e pastagem 2) e elevada degradação (pastagem 3 e pastagem 4). A melhor qualidade do solo foi observada na área de mata. Entre os atributos do solo utilizados como indicadores de qualidade do solo os mais sensíveis aos níveis de pastagens degradadas são os atributos químicos pH, Ca2+, Mg2+, Al3+, H+Al, saturação por bases (V), saturação por alumínio (m), seguidos pelos atributos físicos macroporosidade e porosidade total. Os compartimentos da matéria orgânica do solo, matéria orgânica particulada (MOP), matéria orgânica leve (MOL) e carbono solúvel em água (CSA) utilizados como indicadores de qualidade do solo são eficientes em diferenciar a qualidade do solo nas conversões de sistema, mata/pastagens e pastagens/capoeiras, não sendo sensível aos níveis de pastagens degradadas, o que sugere estudos futuros utilizado compartimentos mais sensíveis a pequenas variações. As determinações de campo espessura do horizonte “A”, profundidade do sistema radicular e taxa de cobertura do solo são sensíveis aos níveis de pastagens degradadas, e apresentam uma boa correlação com os indicadores de laboratório macroporosidade (Ma), matéria orgânica particulada (MOP), saturação por bases (V), saturação por alumínio (m) sugerindo assim a utilização dessas determinações como indicadores de qualidade do solo em pastagens degradadas, para o solo e a região estudados.
Resumo:
Cariniana estrellensis (Raddi.) Kuntze e C. legalis (Mart.) Kuntze são arbóreas nativas do Brasil que, além de possuírem alto poder econômico, são objeto de interesse em programas de recuperação de áreas degradadas e em plantios comerciais. A escassez de informações relacionadas ao desempenho ecofisiológico dessas espécies em condições ambientais estressantes dificultam o manejo e conservação das mesmas. Dessa forma, o presente estudo objetivou avaliar a ecofisiologia das espécies em um gradiente de irradiância, por meio de dois experimentos. No experimento 1, plantas de C. estrellensis com 12 meses de idade foram submetidas a quatro tratamentos: 40%, 50%, 70% e 100% de irradiância, durante 104 dias. Ao final desse período foram feitas análises de crescimento, do conteúdo de pigmentos fotossintéticos, de trocas gasosas, da fluorescência da clorofila a, do conteúdo foliar de carboidratos solúveis, das características anatômicas foliares e caulinares e da plasticidade fenotípica da espécie. No experimento 2, plantas de C. estrellensis e C. legalis com 14 meses de idade foram submetidas a dois tratamentos: 30% e 100% de irradiância (sombra e sol, respectivamente), durante 30 dias. Ao final desse período foram feitas análises do estresse oxidativo das espécies, por meio da quantificação da atividade das enzimas catalase e peroxidase do ascorbato e por meio da quantificação do conteúdo foliar de pigmentos fotossintéticos. No experimento 1, em 70% de irradiância, as plantas apresentaram melhor crescimento em altura e diâmetro, maior massa seca de folhas (MSF), de caule (MSC) e de raiz (MSR). Em 70% e 100% de irradiância, as plantas apresentaram folhas menores (AFU) e mais espessas (AFE e MFE) resultando em menor área foliar total (AFT). Nesses tratamentos as plantas também apresentaram menor conteúdo foliar de clorofila a (Chl a) e b (Chl b), porém, maior razão Chl a/b e maior conteúdo de carotenóides, o que implicou em menor razão Chl a/Carot. Taxas fotossintéticas maiores foram encontradas nas plantas em 70% e inibidas em 40% e 50%, em função da baixa irradiância solar, e em 100%, possivelmente pela ocorrência de fotoinibição, como mostraram os parâmetros do fluxo de energia do fotossistema II. De acordo com a análise da fluorescência da clorofila a, em pleno sol, as plantas apresentaram menor densidade de centros de reação ativos (RC/ABS) e maior dissipação de energia (DI0/ABS), culminando com menor desempenho do fotossistema II (PIabs) e desempenho total (PITotal). O conteúdo foliar de carboidratos solúveis foi maior nas plantas em 70%, seguido das plantas em 100% de irradiância, com exceção da glicose, que não variou entre os tratamentos. A maior espessura encontrada nas folhas sob 100% de irradiância foi em função da maior espessura das epidermes adaxial e abaxial e dos parênquimas paliçádico e esponjoso. E o maior diâmetro do caule em 70% de irradiância se deu pela maior espessura do xilema e floema secundários. No experimento 2, as plantas em pleno sol de ambas as espécies também apresentaram menor conteúdo foliar de clorofila a (Chl a) e b (Chl b) e maior razão Chl a/b. No entanto, o conteúdo de carotenóides foi maior, o que implicou em menores razões Chl a/Carot. A atividade da catalase (CAT) variou em função do tempo e da espécie, apresentando uma queda em C. estrellensis aos 16 dias, possivelmente em função de fotoinativação, e um aumento em C. legalis aos 30 dias. Já a atividade da peroxidase do ascorbato (APX) não variou em função do tempo, da espécie ou dos tratamentos. O estudo da plasticidade fenotípica mostrou que C. estrellensis é uma espécie plástica, principalmente em função das variáveis de fotossíntese e trocas gasosas, sendo capaz de sobreviver no gradiente de irradiância testado, o que viabiliza o seu uso em projetos de recuperação de áreas degradadas. E, uma vez que as análises ecofisiológicas mostraram que C. estrellensis e C. legalis apresentaram melhor desempenho em luminosidade moderada, sugere-se que ambas comportaram-se como espécies intermediárias no processo de sucessão florestal. No entanto, uma vez que a concentração de pigmentos foliares e a produção de enzimas antioxidantes inferiram maior susceptibilidade de C. estrellensis à fotoinibição em alta irradiância, sugere-se maior viabilidade do uso de C. legalis em projetos de recuperação de áreas degradas.