938 resultados para Phase-Ii
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to retrospectively compare the treatment times of Class II division 1 malocclusion subjects treated with four first premolar extractions or a non- extraction protocol and fixed edgewise appliances. Eighty- four patients were selected and divided into two groups. Group 1, treated with four first premolar extractions, consisted of 48 patients (27 males and 21 females) with a mean age of 13.03 years and group 2, treated without extractions, consisted of 36 patients (18 males and 18 females) with a mean age of 13.13 years. Group 2 was subdivided into two subgroups, 2A consisting of 16 patients treated in one phase and 2B consisting of 20 patients treated in two phases. The initial and final Treatment Priority Index (TPI), initial ages, initial mandibular crowding, and treatment times of groups 1 and 2 were compared with t- tests. These variables were also compared between group 1 and the subgroups with analysis of variance followed by Tukey's tests. The treatment times for groups 1 and 2 and subgroups 2A and 2B were 2.36, 2.47, 2.25, and 2.64 years, respectively, which were not significantly different. Treatment times with non-extraction and four premolar extraction protocols are similar.
Resumo:
This work reports on emissions of unburned hydrocarbon species from batch combustion of fixed beds of coal, sugar-cane bagasse, and blends thereof in a pre-heated two-stage laboratory furnace operated in the temperature range of 800-1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on emissions of pollutants were assessed. Furnace effluents were analyzed for products of incomplete combustion (PICs) including CO, volatile and semi-volatile hydrocarbons, and particulate matter, as has been reported in Ref. [1]. Emitted unburned hydrocarbons include traces of potentially health-hazardous Polycyclic Aromatic Hydrocarbons (PAHs), which are the focus of this work. Under the batch combustion conditions implemented herein, PAH were only generated during the volatile combustion phase of the fuels. The most prevalent species were in descending order: naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, dibenzofuran, benzofuran, byphenyl, fluorene, 9H-fluoren-9-one, acephenantrylene, benzo[b] fluoranthene, 1-methyl-naphthalene; 2-methyl-naphthalene, benz[a] anthracene and benzo[a] pyrene. PAH yields were the highest from combustion of neat bagasse. Combustion of the blends resulted in lower yields of PAH, than combustion of either of their neat fuel constituents. Increasing the furnace operating temperature enhanced the PAH emissions from bagasse, but had little effect on those from the coal or from the blends. Flue gas treatment in a secondary-stage furnace, upon with additional air, typically reduced PAH yields by promoting oxidation of the primary-stage furnace effluents. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.
Resumo:
2-(Diphenylphosphinomethyl)aniline. H2L1, reacts with [RuCl2(PPh3)(3)] to yield the monomeric complexes [RuCl2(H2L1)(PPh3)(CH3CN)], [RuCl2(H2L1)(2)]and the chloro-bridged dimer [(H2L1)(PPh3)Ru(mu-Cl)(2)Ru(PPh3) (H2L1)] depending on the conditions applied. Exclusively the monochelate [RuCl2 (H2L1)(dmso)(2)] is formed during reactions of H2L1 with [RuCl2(dmso)(4)]. H2L1 acts as a neutral, bidentate ligand in all complexes. The products are studied spectroscopically and by X-ray diffraction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To assess the risk factors for delayed diagnosis of uterine cervical lesions. Materials and Methods: This is a case-control study that recruited 178 women at 2 Brazilian hospitals. The cases (n = 74) were composed of women with a late diagnosis of a lesion in the uterine cervix (invasive carcinoma in any stage). The controls (n = 104) were composed of women with cervical lesions diagnosed early on (low-or high-grade intraepithelial lesions). The analysis was performed by means of logistic regression model using a hierarchical model. The socioeconomic and demographic variables were included at level I (distal). Level II (intermediate) included the personal and family antecedents and knowledge about the Papanicolaou test and human papillomavirus. Level III (proximal) encompassed the variables relating to individuals' care for their own health, gynecologic symptoms, and variables relating to access to the health care system. Results: The risk factors for late diagnosis of uterine cervical lesions were age older than 40 years (odds ratio [OR] = 10.4; 95% confidence interval [CI], 2.3-48.4), not knowing the difference between the Papanicolaou test and gynecological pelvic examinations (OR, = 2.5; 95% CI, 1.3-4.9), not thinking that the Papanicolaou test was important (odds ratio [OR], 4.2; 95% CI, 1.3-13.4), and abnormal vaginal bleeding (OR, 15.0; 95% CI, 6.5-35.0). Previous treatment for sexually transmissible disease was a protective factor (OR, 0.3; 95% CI, 0.1-0.8) for delayed diagnosis. Conclusions: Deficiencies in cervical cancer prevention programs in developing countries are not simply a matter of better provision and coverage of Papanicolaou tests. The misconception about the Papanicolaou test is a serious educational problem, as demonstrated by the present study.
Resumo:
Background: Bevacizumab improves the efficacy of oxaliplatin-based chemotherapy in metastatic colorectal cancer. Our aim was to assess the use of bevacizumab in combination with oxaliplatin-based chemotherapy in the adjuvant treatment of patients with resected stage III or high-risk stage II colon carcinoma. Methods: Patients from 330 centres in 34 countries were enrolled into this phase 3, open-label randomised trial. Patients with curatively resected stage III or high-risk stage II colon carcinoma were randomly assigned (1: 1: 1) to receive FOLFOX4 (oxaliplatin 85 mg/m(2), leucovorin 200 mg/m(2), and fluorouracil 400 mg/m(2) bolus plus 600 mg/m(2) 22-h continuous infusion on day 1; leucovorin 200 mg/m(2) plus fluorouracil 400 mg/m(2) bolus plus 600 mg/m(2) 22-h continuous infusion on day 2) every 2 weeks for 12 cycles; bevacizumab 5 mg/kg plus FOLFOX4 (every 2 weeks for 12 cycles) followed by bevacizumab monotherapy 7.5 mg/kg every 3 weeks (eight cycles over 24 weeks); or bevacizumab 7.5 mg/kg plus XELOX (oxaliplatin 130 mg/m(2) on day 1 every 2 weeks plus oral capecitabine 1000 mg/m(2) twice daily on days 1-15) every 3 weeks for eight cycles followed by bevacizumab monotherapy 7.5 mg/kg every 3 weeks (eight cycles over 24 weeks). Block randomisation was done with a central interactive computerised system, stratified by geographic region and disease stage. Surgery with curative intent occurred 4-8 weeks before randomisation. The primary endpoint was disease-free survival, analysed for all randomised patients with stage III disease. This study is registered with ClinicalTrials.gov, number NCT00112918. Findings: Of the total intention-to-treat population (n=3451), 2867 patients had stage III disease, of whom 955 were randomly assigned to receive FOLFOX4, 960 to receive bevacizumab-FOLFOX4, and 952 to receive bevacizumab-XELOX. After a median follow-up of 48 months (range 0-66 months), 237 patients (25%) in the FOLFOX4 group, 280 (29%) in the bevacizumab-FOLFOX4 group, and 253 (27%) in the bevacizumab-XELOX group had relapsed, developed a new colon cancer, or died. The disease-free survival hazard ratio for bevacizumab-FOLFOX4 versus FOLFOX4 was 1.17 (95% CI 0.98-1.39; p=0.07), and for bevacizumab-XELOX versus FOLFOX4 was 1.07 (0.90-1.28; p=0.44). After a minimum follow-up of 60 months, the overall survival hazard ratio for bevacizumab-FOLFOX4 versus FOLFOX4 was 1.27 (1.03-1.57; p=0.02), and for bevacizumab-XELOX versus FOLFOX4 was 1.15 (0.93-1.42; p=0.21). The 573 patients with high-risk stage II cancer were included in the safety analysis. The most common grade 3-5 adverse events were neutropenia (FOLFOX4: 477 [42%] of 1126 patients, bevacizumab-FOLFOX4: 416 [36%] of 1145 patients, and bevacizumab-XELOX: 74 [7%] of 1135 patients), diarrhoea (110 [10%], 135 [12%], and 181 [16%], respectively), and hypertension (12 [1%], 122 [11%], and 116 [10%], respectively). Serious adverse events were more common in the bevacizumab groups (bevacizumab-FOLFOX4: 297 [26%]; bevacizumab-XELOX: 284 [25%]) than in the FOLFOX4 group (226 [20%]). Treatment-related deaths were reported in one patient receiving FOLFOX4, two receiving bevacizumab-FOLFOX4, and five receiving bevacizumab-XELOX. Interpretation: Bevacizumab does not prolong disease-free survival when added to adjuvant chemotherapy in resected stage III colon cancer. Overall survival data suggest a potential detrimental effect with bevacizumab plus oxaliplatin-based adjuvant therapy in these patients. On the basis of these and other data, we do not recommend the use of bevacizumab in the adjuvant treatment of patients with curatively resected stage III colon cancer.
Resumo:
Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti-plasmodium activity. The peptides were synthesized by a conventional solid-phase method on Merrifield's resin using the t-Boc strategy, purified by RP-HPLC and characterized by liquid chromatography/ESI (+) MS (LC-ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti-plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least-square analysis, assessing the position-wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C-terminus, as well as that of hydrophobic amino acids in the N-terminus, suggests that the mechanism underlying the anti-malarial activity of these peptides is attributed to its amphiphilic character.
Resumo:
In the work underlying this thesis solid-phase microextraction (SPME) was evaluated as a passive sampling technique for organophosphate triesters in indoor air. These compounds are used on a large scale as flame-retarding and plastizicing additives in a variety of materials and products, and have proven to be common pollutants in indoor air. The main objective of this work was to develop an accurate method for measuring the volatile fraction. Such a method can be used in combination with active sampling to obtain information regarding the vapour/particulate distribution in different indoor environments. SPME was investigated under both equilibrium and non-equilibrium conditions and parameters associated with these different conditions were estimated. In Paper I, time-weighted average (TWA) SPME under dynamic conditions was investigated in order to obtain a fast air sampling method for organophosphate triesters. Among the investigated SPME coatings, the absorptive PDMS polymer had the highest affinity for the organophosphate triesters and was consequently used in all further work. Since the sampling rate is dependent on the agitation conditions, the linear airflow rates had to be carefully considered. Sampling periods as short as 1 hour were shown to be sufficient for measurements in the ng-μg m-3 range when using a PDMS 100-μm fibre and a linear flow rate above 7 cm s-1 over the fibre. SPME under equilibrium conditions is rather time-consuming, even under dynamic conditions, for slowly partitioning compounds such as organophosphate triesters. Nevertheless, this method has some significant advantages. For instance, the limit of detection is much lower compared to 1 h TWA sampling. Furthermore, the sampling time can be ignored as long as equilibrium has been attained. In Paper II, SPME under equilibrium conditions was investigated and evaluated for organophosphate triester vapours. Since temperature and humidity are closely associated with the distribution constant a simple study of the effect of these parameters was performed. The obtained distribution constants were used to determine the air levels in a common indoor environment. SPME and parallel active sampling on filters yielded similar results, indicating that the detected compounds were almost entirely associated with the vapour phase To apply dynamic SPME method in the field a sampler device, which enables controlled linear airflow rates to be applied, was constructed and evaluated (Paper III). This device was developed for application of SPME and active sampling in parallel. A GC/PICI-MS/MS method was developed and used in combination with active sampling of organophosphate triesters in indoor air (Paper IV). The combination of MS/MS and the soft ionization achieved with methanol as reagent gas yielded high selectivity and detection limits comparable to those provided by GC with nitrogen-phosphorus detection (NPD). The method limit of detection, when sampling 1.5 m3 of air, was in the range 0.1-1.4 ng m-3. In Paper V, the developed MS method was used in combination with SPME for indoor air measurements. The levels detected in the investigated indoor environments range from a few ng to μg m-3. Tris(2-chloropropyl) phosphate was detected at a concentration as high as 7 μg m-3 in a newly rebuilt lecture room.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Sterne mit einer Anfangsmasse zwischen etwa 8 und 25 Sonnenmassen enden ihre Existenz mit einer gewaltigen Explosion, einer Typ II Supernova. Die hierbei entstehende Hoch-Entropie-Blase ist ein Bereich am Rande des sich bildenden Neutronensterns und gilt als möglicher Ort für den r-Prozess. Wegen der hohen Temperatur T innerhalb der Blase ist die Materie dort vollkommen photodesintegriert. Das Verhältnis von Neutronen zu Protonen wird durch die Elektronenhäufigkeit Ye beschrieben. Die thermodynamische Entwicklung des Systems wird durch die Entropie S gegeben. Da die Expansion der Blase schnell vonstatten geht, kann sie als adiabatisch betrachtet werden. Die Entropie S ist dann proportional zu T^3/rho, wobei rho die Dichte darstellt. Die explizite Zeitentwicklung von T und rho sowie die Prozessdauer hängen von Vexp, der Expansionsgeschwindigkeit der Blase, ab. Der erste Teil dieser Dissertation beschäftigt sich mit dem Prozess der Reaktionen mit geladenen Teilchen, dem alpha-Prozess. Dieser Prozess endet bei Temperaturen von etwa 3 mal 10^9 K, dem sogenannten "alpha-reichen" Freezeout, wobei überwiegend alpha-Teilchen, freie Neutronen sowie ein kleiner Anteil von mittelschweren "Saat"-Kernen im Massenbereich um A=100 gebildet werden. Das Verhältnis von freien Neutronen zu Saatkernen Yn/Yseed ist entscheidend für den möglichen Ablauf eines r-Prozesses. Der zweite Teil dieser Arbeit beschäftigt sich mit dem eigentlichen r-Prozess, der bei Neutronenanzahldichten von bis zu 10^27 Neutronen pro cm^3 stattfindet, und innerhalb von maximal 400 ms sehr neutronenreiche "Progenitor"-Isotope von Elementen bis zum Thorium und Uran bildet. Bei dem sich anschliessendem Ausfrieren der Neutroneneinfangreaktionen bei 10^9 K und 10^20 Neutronen pro cm^3 erfolgt dann der beta-Rückzerfall der ursprünglichen r-Prozesskerne zum Tal der Stabilität. Diese Nicht-Gleichgewichts-Phase wird in der vorliegenden Arbeit in einer Parameterstudie eingehend untersucht. Abschliessend werden astrophysikalische Bedingungen definiert, unter denen die gesamte Verteilung der solaren r-Prozess-Isotopenhäufigkeiten reproduziert werden können.