964 resultados para Ordinary differential equations. Initial value problem. Existenceand uniqueness. Euler method
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
Resumo:
A biomassa é uma das fontes de energia renovável com maior potencial em Portugal, sendo a capacidade de produção de pellets de biomassa atualmente instalada superior a 1 milhão de toneladas/ano. Contudo, a maioria desta produção destina-se à exportação ou à utilização em centrais térmicas a biomassa, cujo crescimento tem sido significativo nos últimos anos, prevendo-se que a capacidade instalada em 2020 seja de aproximadamente 250 MW. O mercado português de caldeiras a pellets é bastante diversificado. O estudo que realizamos permitiu concluir que cerca de 90% das caldeiras existentes no mercado português têm potências inferiores a 60 kW, possuindo na sua maioria grelha fixa (81%), com sistema de ignição eléctrica (92%) e alimentação superior do biocombustível sólido (94%). O objetivo do presente trabalho foi o desenvolvimento de um modelo para simulação de uma caldeira a pellets de biomassa, que para além de permitir otimizar o projeto e operação deste tipo de equipamento, permitisse avaliar as inovações tecnológicas nesta área. Para tal recorreu-se o BiomassGasificationFoam, um código recentemente publicado, e escrito para utilização com o OpenFOAM, uma ferramenta computacional de acesso livre, que permite a simulação dos processos de pirólise, gasificação e combustão de biomassa. Este código, que foi inicialmente desenvolvido para descrever o processo de gasificação na análise termogravimétrica de biomassa, foi por nós adaptado para considerar as reações de combustão em fase gasosa dos gases libertados durante a pirólise da biomassa (recorrendo para tal ao solver reactingFoam), e ter a possibilidade de realizar a ignição da biomassa, o que foi conseguido através de uma adaptação do código de ignição do XiFoam. O esquema de ignição da biomassa não se revelou adequado, pois verificou-se que a combustão parava sempre que a ignição era inativada, independentemente do tempo que ela estivesse ativa. Como alternativa, usaram-se outros dois esquemas para a combustão da biomassa: uma corrente de ar quente, e uma resistência de aquecimento. Ambos os esquemas funcionaram, mas nunca foi possível fazer com que a combustão fosse autossustentável. A análise dos resultados obtidos permitiu concluir que a extensão das reações de pirólise e de gasificação, que são ambas endotérmicas, é muito pequena, pelo que a quantidade de gases libertados é igualmente muito pequena, não sendo suficiente para libertar a energia necessária à combustão completa da biomassa de uma maneira sustentável. Para tentar ultrapassar esta dificuldade foram testadas várias alternativas, , que incluíram o uso de diferentes composições de biomassa, diferentes cinéticas, calores de reação, parâmetros de transferência de calor, velocidades do ar de alimentação, esquemas de resolução numérica do sistema de equações diferenciais, e diferentes parâmetros dos esquemas de resolução utilizados. Todas estas tentativas se revelaram infrutíferas. Este estudo permitiu concluir que o solver BiomassGasificationFoam, que foi desenvolvido para descrever o processo de gasificação de biomassa em meio inerte, e em que a biomassa é aquecida através de calor fornecido pelas paredes do reator, aparentemente não é adequado à descrição do processo de combustão da biomassa, em que a combustão deve ser autossustentável, e em que as reações de combustão em fase gasosa são importantes. Assim, é necessário um estudo mais aprofundado que permita adaptar este código à simulação do processo de combustão de sólidos porosos em leito fixo.
Resumo:
Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
Discussions under this title were held during a special session in frames of the International Conference “Fractional Differentiation and Applications” (ICFDA ’14) held in Catania (Italy), 23-25 June 2014, see details at http://www.icfda14.dieei.unict.it/. Along with the presentations made during this session, we include here some contributions by the participants sent afterwards and also by few colleagues planning but failed to attend. The intention of this special session was to continue the useful traditions from the first conferences on the Fractional Calculus (FC) topics, to pose open problems, challenging hypotheses and questions “where to go”, to discuss them and try to find ways to resolve.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
A new method for the study and optimization of manu«ipulator trajectories is developed. The novel feature resides on the modeling formulation. Standard system desciptions are based on a set of differential equations which, in general, require laborious computations and may be difficult to analyze. Moreover, the derived algorithms are suited to "deterministic" tasks, such as those appearing in a repetitivework, and are not well adapted to a "random" operation that occurs in intelligent systems interacting with a non-structured and changing environment. These facts motivate the development of alternative models based on distinct concepts. The proposed embedding of statistics and Fourier trasnform gives a new perspective towards the calculation and optimization of the robot trajectories in manipulating tasks.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
A agricultura é uma das atividades mais antigas realizadas pelo Homem, sendo de grande importância para a obtenção tanto de bens alimentares como de bens para outros fins. No entanto desde o início constatou-se que as culturas eram afetadas por pragas e doenças que levavam à perda das colheitas. Este motivo deu origem à necessidade de nesses termos surgiu a aplicação de substâncias com o objetivo de proteger as colheitas. Os pesticidas são substâncias naturais ou sintéticas, aplicadas com o objetivo de proteger as plantas eliminando pragas e doenças. Para além da potencial toxicidade destas substâncias, em alguns casos a sua degradação no meio ambiente por microrganismos, hidrólise, radiação solar, etc. dá origem a produtos de degradação tanto ou mais tóxicos que os próprios pesticidas. A utilização deste tipo de substâncias acarreta problemas, visto a sua aplicação ser feita de forma a compensar perdas que ocorrem por meio de degradação, lixiviação, entre outros processos. Este tipo de aplicação leva a que haja contaminação do meio ambiente por parte dos pesticidas, pondo em risco tanto a saúde humana como os restantes seres vivos. A utilização de ciclodextrinas no encapsulamento destes compostos tem como objetivo aumentar a estabilidade do composto e promover a sua libertação de forma controlada. No presente trabalho pretende-se efetuar um estudo comparativo sobre a fotodegradação do herbicida terbutilazina e do fungicida pirimetanil livres e quando encapsulados com 2- hidroxipropil-β- ciclodextrina. De forma a quantificar os pesticidas ao longo do estudo foi utilizado o método analítico de HPLC de fase reversa. Os resultados permitiram constatar que a terbutilazina é fotoquimicamente estável, nas condições aplicadas, visto que ao fim de 75 dias de as soluções de pesticida livre em água desionizada e em água do rio apresentarem ainda 98% do pesticida inicial e as soluções de pesticida encapsulado em água desionizada e em água do rio apresentarem ainda 98% do pesticida inicial. Neste caso particular não foi possível, no intervalo de tempo considerado, avaliar a influência do encapsulamento no processo de fotodegradação da terbutilazina. Dada a baixa fotodegradação observada optou-se pela adição de peróxido de hidrogénio às soluções de controlo e 35 mM de HP-β-CD e acetona às soluções de 0 mM e 17,5 mM de HP-β-CD, para tentar promover a degradação do pesticida. Através dos resultados obtidos constatou-se que particularmente para as soluções onde foi adicionada acetona houve um aumento da velocidade de degradação no entanto esta ainda ocorria de forma lenta e muito semelhante quer para o pesticida livre quer para o encapsulado. Relativamente ao estudo da fotodegradação do pirimetanil verificou-se que ao fim de 4 dias de irradiação as soluções de pesticida livre apresentavam já alguma degradação do pesticida e tendo o período de irradiação uma duração de 53 dias foi possível para este pesticida determinar os parâmetros cinéticos em algumas das soluções. Quanto as soluções de água desionizada e água do rio com pirimetanil livre ambas apresentaram degradação do pesticida verificando-se uma cinética de reação de 1ª ordem com constantes de 0,0018 dias-1 e de 0,0060 dias-1 respetivamente. Para a solução de água desionizada com pirimetanil encapsulado não foi detetada degradação do pesticida, já para a solução com pirimetanil encapsulado em água do rio verificou-se a existência de degradação que correspondeu a uma cinética de degradação de 1ª ordem com uma constante de 0,0013 dias-1. Através dos resultados obtidos pode-se concluir que o encapsulamento do pirimetanil com 2-hidroxipropil-β-ciclodextrina é vantajoso visto diminuir a quantidade de pesticida utilizado e aumentar a eficácia do controlo das pragas.
Resumo:
There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.