973 resultados para OXIDATION CATALYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversible peaks of cyclic voltammogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA). The effect of electroccatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The characteristic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammetric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the, presence of high concentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 x 10(-4)-3 x 10(-3) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation and adsorption of the temperature-denatured DNA at GC electrode are studied by differential pulse voltammetry and in situ FTIR spectroelectrochemistry. The temperature-denatured DNA is adsorbed and formed a DNA multilayer at electrode surface. The temperature-denatured DNA showing partly reversible process was first observed based on the reduction peaks appearing at negative scans and the reversible spectral change. The oxidation product of the temperature-denatured DNA can not diffuse away from the electrode surface easily due to the impediment of the DNA multilayer, so it can be partly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4 degreesC for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5 X 10(-3) mol L-1 NADN compared with that obtained at a bare glassy carbon electrode. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel ceramic-carbon electrodes (CCEs) containing 1:12-phosphomolybdic acid (PMo12) were constructed by homogeneously dispersing PMo12 and graphite powder into methyltrimethoxysilane-derived gel. Peak currents for the PMo12-doped CCE were surface-controlled at lower scan rates but diffusion-controlled at higher scan rates and peak potentials shifted to the negative potential direction with increasing pH. In addition, the electrode exhibited electrocatalytic activity toward the oxidation of ascorbic acid. The PMo12-modified CCE presented good chemical and mechanical stability and good surface renewability (ten successive polishing resulted in less than 5% relative standard deviation). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the cyclic voltammetry and quartz crystal microbalance (QCM), the oxidation process and the electrodeposition behavior were studyied during the electrochemical oxidation of 2-mercaptobenzimidazol in aqueous solution. The E-pH diagram was also gained. These results showed the oxidation reaction was one electron reaction. The results from X-ray photoelectron spectrometry verified that the 2-mercaptobenzimidazol was oxidized to bisbenzimidazoyl disulfide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalytic performance of the Pr-TiOx/Ti electrode prepared with electrochemical reduction-oxidation method toward the oxidation of methanol has been studied, The experimental results showed that the Pt-TiOx/Ti electrode has a high electrocatalytic activity and good stability for the electrocatalytic oxidation of methanol, By means of electrochemical, XPS, STM and in-situ FTIR techniques, it was found that one reason for the electrode to exhibit an excellent performance is attributed to the high dispersion between nanosized Pt and TiOx particles, The low adsorption ability of the intermediate derived from methanol, such as linearly adsorbed CO species on the electrode surface due to the interaction between Pt and TiOx, also results in the excellent performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable film was prepared by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemistry behavior of rutin in the DPPC film was investigated. The modified electrode coated with rutin shows a quasi-reversible reduction-oxidation peak on the cyclic voltammogram in phosphate buffer (pH 7.4). This model of biological membrane was not only used to provide biological environment but also to investigate the oxidation of ascorbic acid by rutin. The DPPC-rutin modified electrode behaves as electrocatalytic oxidation to ascorbic acid. The oxidation peak current of ascorbic acid increases drastically and the peak potential of 4 x 10(-4) mol L-1 ascorbic acid shifts negatively about 100 mV compared with that obtained at a bare glassy carbon electrode. The catalytic current increased linearly with the ascorbic acid concentration in the range of 2 x 10(-4) mol L-1 and 1.4 x 10(-3) mol L-1 at a scan rate of 50 mV s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of mimetic biomembrane-cast lipid film was made onto a glassy carbon electrode. Dopamine can be incorporated into the film. The oxidation of 2.0 x 10(-3) mol/L ascorbic acid with dopamine in the film was investigated. The oxidation overpotential of ascorbic acid was reduced by about 260 mV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an acidic aqueous solution of acetonitrile, the catalytic activity of the catalysts consisted of Pd(OAc)(2)/hydroquinone(HQ) with iron phthalocyanine (FePc) from various sources was obviously different in the oxidation of cyclohexene to cyclohexanone, The analysis of the FePc using IR spectroscopy, Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy(SEM) and BET surface area measurement indicated that the catalytic activity of the multicomponent catalytic system composed of iron phthalocyanines depends on the amount of mu -oxo FePc, the crystallinity and the surface structure of iron phthalocyanine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.