925 resultados para OPTICAL PERFORMANCE MONITORING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on digital equalization of nonlinear fiber impairments for coherent optical transmission systems. Building from well-known physical models of signal propagation in single-mode optical fibers, novel nonlinear equalization techniques are proposed, numerically assessed and experimentally demonstrated. The structure of the proposed algorithms is strongly driven by the optimization of the performance versus complexity tradeoff, envisioning the near-future practical application in commercial real-time transceivers. The work is initially focused on the mitigation of intra-channel nonlinear impairments relying on the concept of digital backpropagation (DBP) associated with Volterra-based filtering. After a comprehensive analysis of the third-order Volterra kernel, a set of critical simplifications are identified, culminating in the development of reduced complexity nonlinear equalization algorithms formulated both in time and frequency domains. The implementation complexity of the proposed techniques is analytically described in terms of computational effort and processing latency, by determining the number of real multiplications per processed sample and the number of serial multiplications, respectively. The equalization performance is numerically and experimentally assessed through bit error rate (BER) measurements. Finally, the problem of inter-channel nonlinear compensation is addressed within the context of 400 Gb/s (400G) superchannels for long-haul and ultra-long-haul transmission. Different superchannel configurations and nonlinear equalization strategies are experimentally assessed, demonstrating that inter-subcarrier nonlinear equalization can provide an enhanced signal reach while requiring only marginal added complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Excessive sedation is associated with adverse patient outcomes during critical illness, and a validated monitoring technology could improve care. We developed a novel method, the responsiveness index (RI) of the frontal EMG. We compared RI data with Ramsay clinical sedation assessments in general and cardiac intensive care unit (ICU) patients. Methods. We developed the algorithm by iterative analysis of detailed observational data in 30 medical–surgical ICU patients and described its performance in this cohort and 15 patients recovering from scheduled cardiac surgery. Continuous EMG data were collected via frontal electrodes and RI data compared with modified Ramsay sedation state assessments recorded regularly by a blinded trained observer. RI performance was compared with EntropyTM across Ramsay categories to assess validity. Results. RI correlated well with the Ramsay category, especially for the cardiac surgery cohort (general ICU patients r¼0.55; cardiac surgery patients r¼0.85, both P,0.0001). Discrimination across all Ramsay categories was reasonable in the general ICU patient cohort [PK¼0.74 (SEM 0.02)] and excellent in the cardiac surgery cohort [PK¼0.92 (0.02)]. Discrimination between ‘lighter’ vs ‘deeper’ (Ramsay 1–3 vs 4–6) was good for general ICU patients [PK¼0.80 (0.02)] and excellent for cardiac surgery patients [PK¼0.96 (0.02)]. Performance was significantly better than EntropyTM. Examination of individual cases suggested good face validity. Conclusions. RI of the frontal EMG has promise as a continuous sedation state monitor in critically ill patients. Further investigation to determine its utility in ICU decision-making is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical mapping of voltage signals has revolutionised the field and study of cardiac electrophysiology by providing the means to visualise changes in electrical activity at a high temporal and spatial resolution from the cellular to the whole heart level under both normal and disease conditions. The aim of this thesis was to develop a novel method of panoramic optical mapping using a single camera and to study myocardial electrophysiology in isolated Langendorff-perfused rabbit hearts. First, proper procedures for selection, filtering and analysis of the optical data recorded from the panoramic optical mapping system were established. This work was followed by extensive characterisation of the electrical activity across the epicardial surface of the preparation investigating time and heart dependent effects. In an initial study, features of epicardial electrophysiology were examined as the temperature of the heart was reduced below physiological values. This manoeuvre was chosen to mimic the temperatures experienced during various levels of hypothermia in vivo, a condition known to promote arrhythmias. The facility for panoramic optical mapping allowed the extent of changes in conduction timing and pattern of ventricular activation and repolarisation to be assessed. In the main experimental section, changes in epicardial electrical activity were assessed under various pacing conditions in both normal hearts and in a rabbit model of chronic MI. In these experiments, there was significant changes in the pattern of electrical activation corresponding with the changes in pacing regime. These experiments demonstrated a negative correlation between activation time and APD, which was not maintained during ventricular pacing. This suggests that activation pattern is not the sole determinant of action potential duration in intact hearts. Lastly, a realistic 3D computational model of the rabbit left ventricle was developed to simulate the passive and active mechanical properties of the heart. The aim of this model was to infer further information from the experimental optical mapping studies. In future, it would be feasible to gain insight into the electrical and mechanical performance of the heart by simulating experimental pacing conditions in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents theoretical investigations of the sub band structure and optical properties of semiconductor quantum wires. For the subband structure, we employ multiband effective-mass theory and the effective bond-orbital model both of which fully account for the band mixing and material anisotropy. We also treat the structure geometry in detail taking account of such effects as the compositional grading across material interfaces. Based on the subband structure, we calculate optical properties of quantum-wire structures. A recuring theme is the cross-over from one- to ~wo-dimensional behavior in these structures. This complicated behavior procludes the application of simple theoretical models to obtain the electronic structure. In particular, we calculate laser properties of quantum wires grown in V-grooves and find enhanced performance compared with quantum-well lasers. We also investigate optical anisotropy in quantum-wire arrays and propose an electro-optic device based on such structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-of-plane blade deflections shows good agreement between DIC results and aeroelastic simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exhaled breath (EB) and exhaled breath condensate (EBC) contain numerous volatile gases and a wide-array of non-volatile compounds, several of which have been investigated as markers of lower airway inflammation in human and veterinary medicine and have been used to diagnose and monitor diseases associated with pulmonary inflammation. The identification of reliable biomarkers within EB and EBC is an active research focus with the common goal of establishing non-invasive and repeatable assessment of respiratory health and disease in mammals. The application of EB and EBC analysis holds considerable appeal in the investigation of respiratory disease in Thoroughbred racehorses, as inflammatory airway disease (IAD) is a common cause for poor performance in this population of animals. This study documented that EB and EBC samples can be safely collected from Thoroughbred racehorses in their own environment, without adverse effect or interference with the horse’s training regimen. The use of off-line collection and analysis of exhaled gases via chemiluminescence is suitable for the measurement of exhaled carbon monoxide, but is not appropriate for analyzing exhaled nitric oxide in horses. Significant changes in the concentration of exhaled CO and the pH of EBC occurred in response to strenuous exercise and when exercising in different environmental temperatures. Exhaled CO was associated with tracheal mucus score (and the number of neutrophils in the mucus) and EBC pH was significantly different in horses with evidence of neutrophilic IAD compared to horses without IAD. Numerous physiological and environmental variables were identified as confounding factors in the assessment of both exhaled CO and EBC pH, with respiratory rate prior to EB collection, and during EBC collection, consistently identified as an explanatory variable influencing the concentration of exhaled biomarkers. Further studies in EB and EBC analysis in horses need to focus on objectively accounting for key respiratory dynamics during sample collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ingold port adaption of a free beam NIR spectrometer is tailored for optimal bioprocess monitoring and control. The device shows an excellent signal to noise ratio dedicated to a large free aperture and therefore a large sample volume. This can be seen particularly in the batch trajectories which show a high reproducibility. The robust and compact design withstands rough process environments as well as SIP/CIP cycles. Robust free beam NIR process analyzers are indispensable tools within the PAT/QbD framework for realtime process monitoring and control. They enable multiparametric, non-invasive measurements of analyte concentrations and process trajectories. Free beam NIR spectrometers are an ideal tool to define golden batches and process borders in the sense of QbD. Moreover, sophisticated data analysis both quantitative and MSPC yields directly to a far better process understanding. Information can be provided online in easy to interpret graphs which allow the operator to make fast and knowledge-based decisions. This finally leads to higher stability in process operation, better performance and less failed batches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to address the increasing stakeholder requirements for environmentally sustainable products and processes, firms often need the participation of their supply chain partners. Green supply chain management has emerged as a set of managerial practices that integrate environmental issues into supply chain management. If implemented successfully, green supply chain management can be a way to achieve competitive advantage while enhancing the environmental sustainability of the firm. The overall purpose of this dissertation is to contribute to the discussion on green supply chain management practices from the perspective of their drivers and performance implications. The theoretical background arises from the literature on competitive strategy, firm performance and green supply chain management. The research questions are addressed by analysing firm-level data from manufacturing, trading and logistics firms operating in Finland. The empirical data comes from two consecutive Finland State of Logistics surveys in 2012 and 2014, combined with financial reporting data from external databases. The data is analysed with multiple statistical methods. First, the thesis contributes to the discussion of the drivers of GSCM practices. To enhance the understanding of the relationship between competitive strategy and GSCM practices, a conceptual tool to describe generic competitive strategy approaches was developed. The findings suggest that firms pursuing marketing differentiation are more likely to be able to compete by having only small environmental effects and by adopting a more advanced form of external green supply chain management, such as a combination of strong environmental collaboration and the increased environmental monitoring of suppliers. Furthermore, customer requirements for environmental sustainability are found to be an important driver in the implementation of internal GSCM practices. Firms can respond to this customer pressure by passing environmental requirements on to their suppliers, either through environmental collaboration or environmental monitoring. Second, this thesis adds value to the existing literature on the effects of green supply chain management practices on firm performance. The thesis provides support for the idea that there is a positive relationship between GSCM practices and firm performance and enhances the understanding of how different types of GSCM practices are related to 1) financial, 2) operational and 3) environmental performance in manufacturing and logistics. The empirical results suggest that while internal GSCM practices have the strongest effect on environmentalperformance, environmental collaboration with customers seems to be the most effective way to improve financial performance. In terms of operational performance, the findings were more mixed, suggesting that the operational performance of firms is more likely to be affected by firm characteristics than by the choices they make regarding their environmental collaboration. This thesis is also one of the first attempts to empirically analyse the relationship between GSCM practices and performance among logistics service providers. The findings also have managerial relevance. Management, especially in manufacturing and logistics industries, may benefit by gaining knowledge about which types of GSCM practice could provide the largest benefits in terms of different performance dimensions. This thesis also has implications for policy-makers and regulators regarding how to promote environmentally friendly activities among 1) manufacturing; 2) trading; and 3) logistics firms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the temporal dynamics of iron concentrations and temperature on a faunal assemblage at the Lucky Strike vent was performed using the Tempo ecological module at the EMSO-Azores deep-sea observatory. The CHEMINI in situ analyzer was implemented on this structure to determine reactive iron concentrations in unfiltered seawater samples along with a temperature probe. Stability tests were performed on the CHEMINI analyzer before deployment (optical module, hyperbaric tests, and deep-sea calibration) for long-term in situ analysis of reactive iron (six months, 2013–2014) at the Tour Eiffel active edifice. Recorded daily, the in situ standard (25 \mu mol.L {}^{-1} ) showed excellent reproducibility (1.07%, n=522 ), confirming satisfactory analytical performance of the CHEMINI analyzer and thus validating the iron concentrations measured by the instrument. Furthermore, the analyzer proved to be reliable and robust over time. The averaged reactive iron concentration for the six-month period remained low ([Fe] =text{7.12}\pm text{2.11} \mu mol.L {}^{-1} , n=519 ), but showed some noticeable variations with temperature. Reactive iron concentrations and temperature were significantly correlated emphasizing reactive iron stabilization over the time of deployment. Period spectra indicated strong tidal influence and relevant frequencies of four to five days for both variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions. (C) 2010 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceans environmental monitoring and seafloor exploitation need in situ sensors and optical devices (cameras, lights) in various locations and on various carriers in order to initiate and to calibrate environmental models or to operate underwater industrial process supervision. For more than 10 years Ifremer deploys in situ monitoring systems for various seawater parameters and in situ observation systems based on lights and HD Cameras. To be economically operational, these systems must be equipped with a biofouling protection dedicated to the sensors and optical devices used in situ. Indeed, biofouling, in less than 15 days [1] will modify the transducing interfaces of the sensors and causes unacceptable bias on the measurements provided by the in situ monitoring system. In the same way biofouling will decrease the optical properties of windows and thus altering the lighting and the quality fot he images recorded by the camera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mental stress is known to disrupt the execution of motor performance and can lead to decrements in the quality of performance, however, individuals have shown significant differences regarding how fast and well they can perform a skilled task according to how well they can manage stress and emotion. The purpose of this study was to advance our understanding of how the brain modulates emotional reactivity under different motivational states to achieve differential performance in a target shooting task that requires precision visuomotor coordination. In order to study the interactions in emotion regulatory brain areas (i.e. the ventral striatum, amygdala, prefrontal cortex) and the autonomic nervous system, reward and punishment interventions were employed and the resulting behavioral and physiological responses contrasted to observe the changes in shooting performance (i.e. shooting accuracy and stability of aim) and neuro-cognitive processes (i.e. cognitive load and reserve) during the shooting task. Thirty-five participants, aged 18 to 38 years, from the Reserve Officers’ Training Corp (ROTC) at the University of Maryland were recruited to take 30 shots at a bullseye target in three different experimental conditions. In the reward condition, $1 was added to their total balance for every 10-point shot. In the punishment condition, $1 was deducted from their total balance if they did not hit the 10-point area. In the neutral condition, no money was added or deducted from their total balance. When in the reward condition, which was reportedly most enjoyable and least stressful of the conditions, heart rate variability was found to be positively related to shooting scores, inversely related to variability in shooting performance and positively related to alpha power (i.e. less activation) in the left temporal region. In the punishment (and most stressful) condition, an increase in sympathetic response (i.e. increased LF/HF ratio) was positively related to jerking movements as well as variability of placement (on the target) in the shots taken. This, coupled with error monitoring activity in the anterior cingulate cortex, suggests evaluation of self-efficacy might be driving arousal regulation, thus affecting shooting performance. Better performers showed variable, increasing high-alpha power in the temporal region during the aiming period towards taking the shot which could indicate an adaptive strategy of engagement. They also showed lower coherence during hit shots than missed shots which was coupled with reduced jerking movements and better precision and accuracy. Frontal asymmetry measures revealed possible influence of the prefrontal lobe in driving this effect in reward and neutral conditions. The possible interactions, reasons behind these findings and implications are discussed.