900 resultados para Numerical Schemes
Resumo:
The FENE-CR model is investigated through a numerical algorithm to simulate the time-dependent moving free surface flow produced by a jet impinging on a flat surface. The objective is to demonstrate that by increasing the extensibility parameter L, the numerical solutions converge to the solutions obtained with the Oldroyd-B model. The governing equations are solved by an established free surface flow solver based on the finite difference and marker-and-cell methods. Numerical predictions of the extensional viscosity obtained with several values of the parameter L are presented. The results show that if the extensibility parameter L is sufficiently large then the extensional viscosities obtained with the FENE-CR model approximate the corresponding Oldroyd-B viscosity. Moreover, the flow from a jet impinging on a flat surface is simulated with various values of the extensibility parameter L and the fluid flow visualizations display convergence to the Oldroyd-B jet flow results.
Resumo:
The present study aimed to notify the history of albendazole sulphoxide (ALB-SO) and albendazole (ALBZ) efficacy against Taenia saginata cysticercus (Cysticercus bovis) parasitizing experimentally infected bovines. A total of 11 efficacy trials were performed between the years of 2002 and 2010. In order to perform these trials, animals were individually inoculated with 2 x 104 eggs of T. saginata in each study's day zero (DO). For every trial, a positive control group (untreated infected animals) and a negative control group (animals that were neither infected nor treated) were used. ALB-SO or ALB were administered in the different dosages, in different days of treatments. In a last study with this formulation, this active principle was administered orally, mixed with the mineral supplement, on the 60th DPI, in a dosage of 30 mg/kg. In all trials, on the 100th DPI, all animals were euthanized and submitted to the sequenced slicing of 26 anatomical segments (fragments of approximately five millimeters) for the survey of T. saginata cysticercus. With the obtained results it is possible to verify that in the first trials, conducted in 2002, ALB-SO reached, independently of dosage and treatment scheme, efficacies superior to 98% (arithmetic means). The trials conducted in 2005 (2.5 mg/kg on the 30th, 60th, and 90th DPI) obtained values of efficacy all inferior to 60%. In 2008, the trials with 2.5 and 7.7 mg/kg demonstrated efficacy values inferior to 40%, for both dosages and treatment schemes (30th/60th/90th DPI and 60th DPI). When this formulation was administered orally on the dosage of 30 mg/kg on the 60th DPI, the efficacy against T. saginata cysticercus reached 88.28%. ALB administered orally showed efficacy values of 0.0%, 29.88% and 28.64% in the dosages of 5, 10 and 15 mg/kg, respectively, using the treatment schemes described above for each dosage. Based on the results of these trials, conducted in an eight year period (2002-2010) using the sequenced slicing method for evaluating the efficacy of the aforementioned formulations against T. saginata cysticercus, it is possible to observe that, amongst the few molecules used in the chemotherapic treatment against T. saginata larvae, ALB-SO, administered in varied routes, dosages and treatment schemes, the studies conducted in 2008, 2009, and 2010, have a low therapeutic efficacy against C bovis in Brazil, while ALBZ had insignificant efficacy values against T. saginata larvae parasitizing experimentally infected bovines. However, future studies using molecular biology will be necessary to assess whether the difference on the efficacy of the ALB-SO can be related to strain or another specific factor. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.
Resumo:
An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with topology optimization in plane elastic-linear problems considering the influence of the self weight in efforts in structural elements. For this purpose it is used a numerical technique called SESO (Smooth ESO), which is based on the procedure for progressive decrease of the inefficient stiffness element contribution at lower stresses until he has no more influence. The SESO is applied with the finite element method and is utilized a triangular finite element and high order. This paper extends the technique SESO for application its self weight where the program, in computing the volume and specific weight, automatically generates a concentrated equivalent force to each node of the element. The evaluation is finalized with the definition of a model of strut-and-tie resulting in regions of stress concentration. Examples are presented with optimum topology structures obtaining optimal settings. (C) 2012 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U. All rights reserved.
Resumo:
Effects of Haematobia irritans infestation on weight gain of 18 to 20 months old non-castrated Nelore calves, were investigated, under field conditions, using different antiparasitic treatments. Sixty animals were divided in three groups, with 20 bovines each: T01 (untreated control); T02 (treated with Cypermethrin 15 g + Chlorpyriphos 25 g + Citronellal 1 g, as a whole body spray, on days 0,30, 60, 90 and 120 post-treatment); and T03 (treated on day zero with an ear tag impregnated with Diazinon 6 g on the left ear). Counts of H. irritans were conducted on day 30, 60, 90, 120 and 150 post-treatment (DPT). On the same experimental dates, animals were individually weighed, seeking to evaluate the effects of parasitism on the development of animals in each group. From this study it is concluded that T03 had significantly higher efficacy (>90%, till 90 DPT), based on H. irritans fly counts, compared to T02 which showed little or no effect. At the specific conditions of the present study, an average of approximately 90 flies (mean difference of flycounts between groups T01 and T03) was associated with a difference of 20 kg/animal in 150 days. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main objective of this work is to illustrate an application of angular active control in a sectioned airfoil using shape memory alloys. In the proposed model, one wants to establish the shape of the airfoil profile based on the determination of an angle between its two sections. This angle is obtained by the effect of the shape memory of the alloy by passing an electric current that modifies the temperature of the wire through the Joule effect, changing the shape of the alloy. This material is capable of converting thermal energy into mechanical energy and once permanently deformed, the material can return to its original shape by heating. Due to the presence of nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of a control system based on fuzzy logic. Through numerical tests, the performance of the fuzzy controller is compared with an on-off controller applied in a sectioned airfoil model.
Resumo:
An excitation force that is not influenced by the system's states is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist. This manifestation of the law of conversation of energy is known as Sommerfeld Effect. In the case of obtaining a mathematical model for such system, additional equations are usually necessary to describe the vibration sources and their coupling with the mechanical system. In this work, a cantilever beam and a non-ideal electric DC motor that is fixed to the beam free end is analyzed. The motor has an unbalanced mass that provides excitation to the system proportional to the current applied to the motor. During the motor's coast up operation, as the excitation frequency gets closer to the beam first natural frequency and if the drive power increases further, the DC motor speed remains constant until it suddenly jumps to a much higher value (simultaneously the vibration amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in Sommerfeld effect. Numerical simulations and experimental tests are used to help insight this dynamic behavior.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The Numerical Cognition is influenced by biological, cognitive, educational, and cultural factors and entails the following systems: Number Sense (NS) represents the innate ability to recognize, compare, add, and subtract small quantities, without the need of counting; Number Production (NP) which includes reading, writing and counting numbers or objects; Number Comprehension (NC), i.e., the understanding the nature of the numerical symbols and their number, and the calculation (CA). The aims of the present study were to: i) assess theoretical constructs (NS, NC, NP and CA) in children from public schools from 1 st -to 6 th - grades; and ii) investigate their relationship with schooling and working memory. The sample included 162 children, both genders, of 7-to 12-years-old that studied in public school from 1 st -to 6 th -grades, which participated in the normative study of Zareki-R (Battery of neuropsychological tests for number processing and calculation in children, Revised; von Aster & Dellatolas, 2006). Children of 1 st and 2 nd grades demonstrated an inferior global score in NC, NP and CA. There were no genderrelated differences. The results indicated that the contribution of NS domain in Zareki-R performance is low in comparison to the other three domains, which are dependent on school-related arithmetic skills.
Resumo:
The need for renewable energy sources, facing the consequences of Climate Change, results in growing investment for solar collectors’ use. Research in this field has accompanied this expansion and evacuated tube solar collector stands as an important study focus. Thus, several works have been published for representing the stratification of the fluid inside the tubes and the reservoir, as well as analytical modeling for the heat flow problem. Based on recent publications, this paper proposes the study of solar water heating with evacuated tubes, their operation characteristics and operating parameters. To develop this work, a computational tool will be used - in this case, the application of computational fluid dynamics (CFD) software. In possession of the implemented model, a numerical simulation will be performed to evaluate the behavior of the fluid within this solar collector and possible improvements to be applied in the model.
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.