Discovering promising regions to help global numerical optimization algorithms


Autoria(s): Melo, Vinicius V. de; Delbem, Alexandre C. B.; Pinto Junior, Dorival L.; Federson, Fernando M.; Gelbukh, A.; Morales, AFK
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/01/2007

Resumo

We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.

Formato

72-82

Identificador

http://dx.doi.org/10.1007/978-3-540-76631-5_8

Micai 2007: Advances In Artificial Intelligence. Berlin: Springer-verlag Berlin, v. 4827, p. 72-82, 2007.

0302-9743

http://hdl.handle.net/11449/116223

10.1007/978-3-540-76631-5_8

WOS:000251037900008

Idioma(s)

eng

Publicador

Springer

Relação

Micai 2007: Advances In Artificial Intelligence

Direitos

closedAccess

Tipo

info:eu-repo/semantics/conferencePaper