888 resultados para Nickel free P558 stainless steel
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)
Resumo:
The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.
Resumo:
This paper reports the application of linearly increasing stress testing (LIST) to the study of stress corrosion cracking (SCC) of carbon steel in 4 N NaNO3 and in Bayer liquor. LIST is similar to the constant extension-rate testing (CERT) methodology with the essential difference that the LIST is load controlled whereas the CERT is displacement controlled. The main conclusion is that LIST is suitable for the study of the SCC of carbon steels in 4 N NaNO3 and in Bayer liquor. The low crack velocity in Bayer liquor and a measured maximum stress close to that of the reference specimen in air both indicate that a low applied stress rate is required to study SCC in this system. (C) 1998 Chapman & Hall.
Resumo:
Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.
Resumo:
This work describes the synthesis and characterization of a series of new α-diimine and P,O, β-keto and acetamide phosphines ligands, and their complexation to Ni(II), Co(II),Co(III) and Pd(II) to obtain a series of new compounds aiming to study their structural characteristics and to test their catalytic activity. All the compounds synthesized were characterized by the usual spectroscopic and spectrometric techniques: Elemental Analysis, MALDI-TOF-MS spectrometry, IR, UV-vis, 1H, 13C and 31P NMR spectroscopies. Some of the paramagnetic compounds were also characterized by EPR. For the majority of the compounds it was possible to solve their solid state structure by single crystal X-ray diffraction. Tests for olefin polymerization were performed in order to determine the catalytic activity of the Co(II) complexes. Chapter I presents a brief introduction to homogenous catalysis, highlighting the reactions catalyzed by the type of compounds described in this thesis, namely olefin polymerization and oligomerization and reactions catalyzed by the complexes bearing α-diimines and P,O type ligands. Chapter II is dedicated to the description of the synthesis of new α-diimines cobalt (II) complexes, of general formula [CoX2(α-diimine)], where X = Cl or I and the α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB). Structures solved by single crystal X-ray diffraction were obtained for all the described complexes. For some of the compounds, X-band EPR measurements were performed on polycrystalline samples, showing a high-spin Co(II) (S = 3/2) ion, in a distorted axial environment. EPR single crystal experiments on two of the compounds allowed us to determine the g tensor orientation in the molecular structure. In Chapter III we continue with the synthesis and characterization of more cobalt (II)complexes bearing α-diimines of general formula [CoX2(α-diimine)], with X = Cl or I and α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl- 1,4-diaza-1,3-butadiene (Ar-DAB). The structures of three of the new compounds synthesized were determined by single crystal X-ray diffraction. A NMR paramagnetic characterization of all the compounds described is presented. Ethylene polymerization tests were done to determine the catalytic activity of several of the Co(II) complexes described in Chapter II and III and their results are shown. In Chapter IV a new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, and its complexes with Zn(II) and Pd(II), were synthesized. Both the ligand and its complexes show syn and anti isomers. Structures of the ligand and the anti isomer of the Pd(II) complex were solved by single crystal X-ray diffraction. All the compounds were characterized by elemental analysis, MALDI-TOF-MS spectrometry, and by IR, UV-vis, 1H, 13C, 1H-1H COSY, 1H-13C HSQC, 1H-13C HSQC-TOCSY and 1H-1H NOESY NMR when necessary. DFT studies showed that both conformers of [PdCl2(BIAN)] are isoenergetics and can be obtain experimentally. However, we can predict that the isomerization process is not available in square-planar complex, but is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected. Chapter V describes the synthesis of new P, O type ligands, β-keto phosphine, R2PCH2C(O)Ph, and acetamide phosphine R2PNHC(O)Me, as well as a series of new cobalt(III) complexes namely [(η5-C5H5)CoI2{Ph2PCH2C(O)Ph}], and [(η5- C5H5)CoI2{Ph2PNHC(O)Me}]. Treating these Co(III) compounds with an excess of Et3N, resulted in complexes η2-phosphinoenolate [(η5-C5H5)CoI{Ph2PCH…C(…O)Ph}] and η2- acetamide phosphine [(η5-C5H5)CoI{Ph2PN…C(…O)Me}]. Nickel (II) complexes were also obtained: cis-[Ni(Ph2PN…C(…O)Me)2] and cis-[Ni((i-Pr)2PN…C(…O)Me)2]. Their geometry and isomerism were discussed. Seven structures of the compounds described in this chapter were determined by single crystal X-ray diffraction. The general conclusions of this work can be found in Chapter VI.
Resumo:
In order to investigate the efficiency of sulfate green rust (GR2) to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II) and Fe(III) sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II), Fe(II) and Fe(III) sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II) sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD) characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples. XRD was repeated after 45 days. The results showed that Nious GR2 prepared by coprecipitation is isomorphous to Ni-free GR2, i.e. Ni is incorporated into the crystalline structure. Fe(II) was not replaced by Ni(II) in the crystalline structure of GR2 formed prior to exposure to solution-phase Ni. This suggests Ni was adsorbed to the GR2 surface. Sulfate green rust is more efficient in removing Ni from the environment by coprecipitation.
Resumo:
Työn tavoitteena oli selvittää tilannetta Euroopan automaattiteräsmarkkinoilla ja sen perusteella arvioida Imatra Steelin mahdollisuuksia kilpailla kyseessä olevilla markkinoilla. Tärkein tavoite oli kokonaismarkkinapotentiaalin arvioiminen Saksan, Ruotsin, Englannin ja Suomen markkinoilla. Lisäksi selvitettiin käytetyt automaattiteräslajit ja mitta-alue, hintataso sekä koneistukseenliittyviä teknisiä yksityiskohtia.Tavoitteena oli myös kartoittaa asenteita ja mielipiteitä mahdollisesta lyijyn käytön kieltämisestä teräksen seosaineena tulevaisuudessa. Paremman kokonaiskuvan saamiseksi analysoitiin myös kilpailutilannetta Euroopassa. Työn teoriakehyksessä tutkittiin teollisuustuotteiden markkinatutkimuksen suorittamisen erityispiirteitä, markkinapotentiaalin määrittämiseen liittyviä käsitteitä ja kilpailija-analyysin suorittamista. Empiirinen tutkimus suoritettiin pääasiassa asiantuntijoiden haastattelujen ja kyselyjen avulla. Haastateltavina oli tukkureita ja loppukäyttäjiä. Kilpailutilanteen kartoittaminen perustuu lähinnä sekundääriseen tietoon, Internet-sivuihin ja myyntikonttoreiden aikaisemmin keräämään tietoon.Automaattiterästen kokonaispotentiaaliksi Euroopassa arvioitiin miljoona tonnia ja suurin osa kaupasta käydään tutkituilla markkina-alueilla. Suurimmat volyymit sijoittuvat pienemmille mitta-alueille, Æ 12 - 50 mm. Markkinoita hallitsee muutama suuri teräksen valmistaja. Imatra Steel kohtuullisen pienenä toimittajana ei pysty kilpailemaan volyymilla ja tuotevalikoimallaan suurten teräsjättien kanssa. Imatra Steelin mahdollinen strategiavaihtoehto olisi yrittää löytää ne kapeat segmentit ja markkinaraot, joilla sen tuotteet jatietotaito tuovat asiakkaalle suurimman mahdollisen hyödyn verrattuna kilpailijoihin.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
BACKGROUND: There are limited data on the composition and smoke emissions of 'herbal' shisha products and the air quality of establishments where they are smoked. METHODS: Three studies of 'herbal' shisha were conducted: (1) samples of 'herbal' shisha products were chemically analysed; (2) 'herbal' and tobacco shisha were burned in a waterpipe smoking machine and main and sidestream smoke analysed by standard methods and (3) the air quality of six waterpipe cafes was assessed by measurement of CO, particulate and nicotine vapour content. RESULTS: We found considerable variation in heavy metal content between the three products sampled, one being particularly high in lead, chromium, nickel and arsenic. A similar pattern emerged for polycyclic aromatic hydrocarbons. Smoke emission analyses indicated that toxic byproducts produced by the combustion of 'herbal' shisha were equivalent or greater than those produced by tobacco shisha. The results of our air quality assessment demonstrated that mean PM2.5 levels and CO content were significantly higher in waterpipe establishments compared to a casino where cigarette smoking was permitted. Nicotine vapour was detected in one of the waterpipe cafes. CONCLUSIONS: 'Herbal' shisha products tested contained toxic trace metals and PAHs levels equivalent to, or in excess of, that found in cigarettes. Their mainstream and sidestream smoke emissions contained carcinogens equivalent to, or in excess of, those of tobacco products. The content of the air in the waterpipe cafes tested was potentially hazardous. These data, in aggregate, suggest that smoking 'herbal' shisha may well be dangerous to health.
Resumo:
The study of price risk management concerning high grade steel alloys and their components was conducted. This study was focused in metal commodities, of which nickel, chrome and molybdenum were in a central role. Also possible hedging instruments and strategies for referred metals were studied. In the literature part main themes are price formation of Ni, Cr and Mo, the functioning of metal exchanges and main hedging instruments for metal commodities. This section also covers how micro and macro variables may affect metal prices from the viewpoint of short as well as longer time period. The experimental part consists of three sections. In the first part, multiple regression model with seven explanatory variables was constructed to describe price behavior of nickel. Results were compared after this with information created with comparable simple regression model. Additionally, long time mean price reversion of nickel was studied. In the second part, theoretical price of CF8M alloy was studied by using nickel, ferro-chrome and ferro-molybdenum as explanatory variables. In the last section, cross hedging possibilities for illiquid FeCr -metal was studied with five LME futures. Also this section covers new information concerning possible forthcoming molybdenum future contracts as well. The results of this study confirm, that linear regression models which are based on the assumption of market rationality, are not able to reliably describe price development of metals at issue. Models fulfilling assumptions for linear regression may though include useful information of statistical significant variables which have effect on metal prices. According to the experimental part, short futures were found to incorporate the most accurate information concerning the price movements in the future. However, not even 3M futures were able to predict turning point in the market before the faced slump. Cross hedging seemed to be very doubtful risk management strategy for illiquid metals, because correlations coefficients were found to be very sensitive for the chosen time span.
Resumo:
Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field
Resumo:
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.