970 resultados para Nicholas, Saint, Bp. of Myra.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
Seasonal sea-surface temperaturevariability for the Neoglacial (3300–2500 BP) and Roman WarmPeriod (RWP; 2500–1600 BP), which correspond to the Bronze and Iron Ages, respectively, was estimated using oxygen isotope ratios obtained from high-resolution samples micromilled from radiocarbon-dated, archaeological limpet (Patella vulgata) shells. The coldest winter months recorded in Neoglacial shells averaged 6.6 ± 0.3 °C, and the warmest summer months averaged 14.7 ± 0.4 °C. One Neoglacial shell captured a year without a summer, which may have resulted from a dust veil from a volcanic eruption in the Katla volcanic system in Iceland. RWP shells record average winter and summer monthly temperatures of 6.3 ± 0.1 °C and 13.3 ± 0.3 °C, respectively. These results capture a cooling transition from the Neoglacial to RWP, which is further supported by earlier studies of pine history in Scotland, pollen type analyses in northeast Scotland, and European glacial events. The cooling transition observed at the boundary between the Neoglacial and RWP in our study also agrees with the abrupt climate deterioration at 2800–2700 BP (also referred to as the Subboreal/Subatlantic transition) and therefore may have been driven by decreased solar radiation and weakened North Atlantic Oscillation conditions.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of ‘teleconnection’ between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20–10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated 14C ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination.
Resumo:
Anthropogenic midden deposits are remarkably well preserved at the Neolithic settlement of atalhöyük and provide significant archaeological information on the types and nature of activities occurring at the site. To decipher their complex stratigraphy and to investigate formation processes, a combination of geoarchaeological techniques was used. Deposits were investigated from the early ceramic to late Neolithic levels, targeting continuous sequences to examine high resolution and broader scale changes in deposition. Thin-section micromorphology combined with targeted phytolith and geochemical analyses indicates they are composed of a diverse range of ashes and other charred and siliceous plant materials, with inputs of decayed plants and organic matter, fecal waste, and sedimentary aggregates, each with diverse depositional pathways. Activities identified include in situ burning, with a range of different fuel types that may be associated with different activities. The complexity and heterogeneity of the midden deposits, and thus the necessity of employing an integrated microstratigraphic approach is demonstrated, as a prerequisite for cultural and palaeoenvironmental reconstructions.
Resumo:
In this study, the performance, yield and characteristics of a 15 year old photovoltaic system installation has been investigated. The technology, BP Saturn modules which were steel-blue polycrystalline silicon cells are no longer in production. A bespoke monitoring system was designed and purpose built to monitor the characteristics of 6 strings, of 18 modules connected in series. The total output of the system is configured to 6.5kWp (series to parallel configuration). The PV system is demonstrating system outputs to be inferior by 0.7% per year. However,efficiency values in comparison to standard test conditions have remained practically the same. This output though very relevant to the possible performance and stability of aging cells, requires additional parametric studies to develop a more robust argument. The result presented in this paper is part of an on going investigation into PV system aging effects.
Resumo:
Runoff fields over northern Africa (10–25°N, 20°W–30°E) derived from 17 atmospheric general circulation models driven by identical 6 ka BP orbital forcing, sea surface temperatures, and CO2 concentration have been analyzed using a hydrological routing scheme (HYDRA) to simulate changes in lake area. The AGCM-simulated runoff produced six-fold differences in simulated lake area between models, although even the largest simulated changes considerably underestimate the observed changes in lake area during the mid-Holocene. The inter-model differences in simulated lake area are largely due to differences in simulated runoff (the squared correlation coefficient, R2, is 0.84). Most of these differences can be attributed to differences in the simulated precipitation (R2=0.83). The higher correlation between runoff and simulated lake area (R2=0.92) implies that simulated differences in evaporation have a contributory effect. When runoff is calculated using an offline land-surface scheme (BIOME3), the correlation between runoff and simulated lake area is (R2=0.94). Finally, the spatial distribution of simulated precipitation can exert an important control on the overall response.
Resumo:
A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid-Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year-round cooling.
Resumo:
The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro–Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra–forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.
Resumo:
14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.
Resumo:
The archaeological evidence compiled for Liguria has enabled the formulation of a comprehensive model of Neolithic social, technological and economic development (∼7800–5700 cal yrs BP). The model indicates that during the Early and Middle Neolithic (∼7800–6300 cal yrs BP; ‘Impressed Ware’ and ‘Square Mouthed’ pottery cultures) human activity mainly focussed on low (coastal) and mid-altitude areas. By the Late Neolithic (∼6300–5700 cal yrs BP; ‘Chassey’ culture) farming practices were taking place over a wider range of altitudes and involved transhumant pastoralism. Complementary environmental archaeological and palaeoecological records from caves, open-air sites, lakes and mires indicate that human activities had a more significant impact on the environment than previously thought. This included clearance, especially Abies, Ulmus, Fraxinus and Tilia, and woodland utilisation and management (e.g. leaf foddering), as well as cereal cultivation and animal husbandry. The influence of Middle Holocene climatic changes, especially from ∼7800 cal yrs BP, on the direction of vegetation changes and socio-economic developments during the Neolithic remain uncertain.