930 resultados para Neutron scattering and diffraction
Resumo:
Consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane with an unbounded, piecewise Lyapunov boundary. This problem models time-harmonic electromagnetic scattering in transverse magnetic polarization by one-dimensional rough, perfectly conducting surfaces. A radiation condition is introduced for the problem, which is a generalization of the usual one used in the study of diffraction by gratings when the solution is quasi-periodic, and allows a variety of incident fields including an incident plane wave to be included in the results obtained. We show in this paper that the boundary value problem for the scattered field has at most one solution. For the case when the whole boundary is Lyapunov and is a small perturbation of a flat boundary we also prove existence of solution and show a limiting absorption principle.
Resumo:
The problem of scattering of time-harmonic acoustic waves by an inhomogeneous fluid layer on a rigid plate in R2 is considered. The density is assumed to be unity in the media: within the layer the sound speed is assumed to be an arbitrary bounded measurable function. The problem is modelled by the reduced wave equation with variable wavenumber in the layer and a Neumann condition on the plate. To formulate the problem and prove uniqueness of solution a radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as a system of two second kind integral equations over the layer and the plate. Under additional assumptions on the wavenumber in the layer, uniqueness of solution is proved and the nonexistence of guided wave solutions of the homogeneous problem established. General results on the solvability of systems of integral equations on unbounded domains are used to establish existence and continuous dependence in a weighted norm of the solution on the given data.
Resumo:
We consider the Dirichlet boundary-value problem for the Helmholtz equation, Au + x2u = 0, with Imx > 0. in an hrbitrary bounded or unbounded open set C c W. Assuming continuity of the solution up to the boundary and a bound on growth a infinity, that lu(x)l < Cexp (Slxl), for some C > 0 and S~< Imx, we prove that the homogeneous problem has only the trivial salution. With this resnlt we prove uniqueness results for direct and inverse problems of scattering by a bounded or infinite obstacle.
Resumo:
X-ray resonant scattering has been exploited to investigate the crystal structure of the AB1.5Te1.5 phases (A = Co, Rh, Ir; B = Ge, Sn). Analysis of the diffraction data reveals that CoGe1.5Te1.5 and ASn1.5Te1.5 adopt a rhombohedral skutterudite-related structure, containing diamond-shape B2Te2 rings, in which the B and Te atoms are ordered and trans to each other. Anion ordering is however incomplete, and with increasing the size of both cations and anions, the degree of anion ordering decreases. By contrast, the diffraction data of IrGe1.5Te1.5 are consistent with an almost statistical distribution of the anions over the available sites, although some ordered domains may be present. The thermoelectric properties of these materials are discussed in the light of these results.
Resumo:
Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4-n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn−N and Zn−C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn−C≡N−Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contribution at temperatures up to 295 K.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
Bulk polycrystalline samples in the series Ti1+xS2 (x = 0 to 0.05) were prepared using high temperature synthesis from the elements and spark plasma sintering. X-ray structure analysis shows that the lattice constant c expands as titanium intercalates between TiS2 slabs. For x=0, a Seebeck coefficient close to -300 μV/K is observed for the first time in TiS2 compounds. The decrease in electrical resistivity and Seebeck coefficient that occurs upon Ti intercalation (Ti off stoichiometry) supports the view that charge carrier transfer to the Ti 3d band takes place and the carrier concentration increases. At the same time, the thermal conductivity is reduced by phonon scattering due to structural disorder induced by Ti intercalation. Optimum ZT values of 0.14 and 0.48 at 300K and 700K, respectively, are obtained for x=0.025.
Resumo:
We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accuracy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We also show how our method can be applied to the complementary ‘breakwater’ problem of propagation through an aperture in an infinite sound-hard screen.
Resumo:
The energy of the vh9/2 orbital in nuclei above N = 82 drops rapidly in energy relative to the vf7/2 orbital as the occupancy of the πh11/2 orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides 161Os and 157W, and studied the decays of the proton emitter 160Re in detail. The 161Os and 160Re nuclei were produced in reactions of 290, 300 and 310 MeV 58Ni ions with an isotopically enriched 106Cd target, separated in‐flight using the RITU separator and implanted into the GREAT spectrometer. The 161Os α a decays populated the new nuclide 157W, which decayed by β‐particle emission. The β decay fed the known α‐decaying 1/2+ and 11/2− states in 157Ta, which is consistent with a vf7/2 ground state in 157W. The measured α‐decay energy and half‐life for 161Os correspond to a reduced α‐decay width that is compatible with s‐wave α‐particle emission, implying that its ground state is also a vf7/2 state. Over 7000 160Re nuclei were produced and the γ decays of a new isomeric state feeding the πd3/2 level in 160Re were discovered, but no evidence for the proton or a decay of the expected πh11/2 state could be found. The isomer decays offer a natural explanation for this non‐observation and provides a striking example of the influence of the near degeneracy of the vh9/2 and vf7/2 orbitals on the properties of nuclei in this region.
Resumo:
The purity and structural stability of the high thermoelectric performance Cu12Sb4S13 and Cu10.4Ni1.6Sb4S13 tetrahedrite phases, synthesized by solid–liquid–vapor reaction and Spark Plasma Sintering, were studied at high temperature by Rietveld refinement using high resolution X-ray powder diffraction data, DSC/TG measurements and high resolution transmission electron microscopy. In a complementary study, the crystal structure of Cu10.5Ni1.5Sb4S13 as a function of temperature was investigated by powder neutron diffraction. The temperature dependence of the structural stability of ternary Cu12Sb4S13 is markedly different to that of the nickel-substituted phases, providing clear evidence for the significant and beneficial role of nickel substitution on both sample purity and stability of the tetrahedrite phase. Moreover, kinetic effects on the phase stability/decomposition have been identified and discussed in order to determine the maximum operating temperature for thermoelectric applications. The thermoelectric properties of these compounds have been determined for high density samples (>98%) prepared by Spark Plasma Sintering and therefore can be used as reference values for tetrahedrite samples. The maximum ZT of 0.8 was found for Cu10.4Ni1.6Sb4S13 at 700 K.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
The skutterudites YbxFe2Ni2Sb12 (0≤x≤0.4) have been prepared by solid-state reaction and characterised by powder X-ray diffraction. The compounds crystallise in the cubic space group Im View the MathML source3¯ (a≈9.1 Å) with Yb atoms partially filling the voids in the skutterudite framework. A neutron time-of-flight diffraction experiment for Fe2Ni2Sb12 confirms the disorder of Fe and Ni atoms on the transition-metal site. Electrical resistivity, Seebeck coefficient and thermal conductivity measurements indicate that the thermoelectric performance of the skutterudites shows a marked dependence on the Yb content. Magnetic measurements over the temperature range 2≤T/K≤300 show paramagnetic behaviour for all compounds. Decomposition studies under an oxidising atmosphere at elevated temperatures have also been carried out by thermogravimetric analysis.
Resumo:
Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.
Resumo:
High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.