997 resultados para Naval Intelligence Support Center (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued July 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued October 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued October 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"October 1977."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"April 1981."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"November 1981."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"December 1981."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"August 1982."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"March 1978."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Example problems and methods of data analysis, together with general observations, are given. Smooth-slope runup results for both breaking and nonbreaking waves are presented in a set of curves similar to but revised from those in the Shore Protection Manual (SPM) (U.S. Army, Corps of Engineerings, Coastal Engineering Research Center, 1977). The curves are for structure slopes fronted by horizontal and 1 on 10 bottom slopes. The range of values of d sub s/H' sub o was extended to d sub s/H' sub o = 8; relative depth (d sub s/H' sub o) is important even for d sub s/H' sub o> 3 for waves which do not break on the structure slope. Rough-slope results are presented in similar curves if sufficient data were available. Otherwise, results are given as values of r, which is the ratio of rough-slope runup to smooth-slope runup. Scale-effect in runup is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prototype scale tests of the mooring load and wave transmission characteristics of a floating tire breakwater were conducted in the large wave tank at the Coastal Engineering Research Center. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters, 28 and 42 feet) wide in the direction of wave advance, were tested in water depths of 2 and 4 meters (6.56 and 13.12 feet). Monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters (4.6 feet) were used in the tests. Test results indicate that wave transmission is mainly a function of the breakwater width to incident wavelength ratio with a slight dependence on the incident wave height. However, the mooring forces are mainly a function of the incident wave height with only a slight dependence on the incident wavelength and breakwater width. Recommended design curves for the wave transmission coefficient versus breakwater width to wavelength ratio and mooring load as a function of incident wave height are presented. (Author).